Electronic Supplementary Information (ESI)

Halogen Regulating Induced Reversible High-*T*-Dielectric-Thermal Transitions in Novel Layered Organic-Inorganic Hybrid Semiconducting Crystals

Ding-Chong Han, Yu-Hui Tan,* Yun-Zhi Tang,* Jia-Hui Wen, Hui-Juan Shi, Xiao-Wei Fan,* Qiao-Lin Li and Meng-Na Wang

Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China

Corresponding Author's E-mail: tyxcn@163.com (Y.-H. Tan); tangyunzhi75@163.com (Y.-Z. Tang)

Fig. S1. The basic synthetic route of 1 and 2.

Fig. S2. PXRD (powder X-ray diffraction) measurement comparison with single crystal simulation (b) and the infrared (IR) spectra (a) of **1** at room temperature.

Fig. S3. PXRD (powder X-ray diffraction) measurement comparison with single crystal simulation (b) and the infrared (IR) spectra (a) of **2** at room temperature.

Fig. S4. The heat flow graph of **2** (a). TG-DTA curves ranging temperature from 290 K to 1075 K of **2** (b).

Fig. S5. The X-ray powder diffraction patterns of 2 at different temperatures.

Fig. S6. The frequency-dependent ε' curve of 1 (a) and 2 (b) with temperature changing.

Fig. S7. The calculated energy band structures of 1.

Fig. S8. The calculated energy band structures of 2.

Fig. S9. The Pawley refinements results for 1 at 370 K. The refinements yielding tetragonal crystal system $P4_2/n$ space group with cell parameters are a = b = 8.00325 Å, c = 37.33742 Å, $\alpha = \beta = \gamma = 90^{\circ}$ and V = 2391.5368 Å³.

Fig. S10. The Pawley refinements results for 2 at 370 K. The refinements obtaining monoclinic crystal system I2/m space group with cell parameters are a = 19.68632 Å, b = 9.75979 Å, c = 13.50802 Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 127.97999^{\circ}$ and V = 2045.7253 Å³.

Compound	[Cl-C ₆ H ₄ -(CH ₂) ₂ NH ₃] ₂ CdBr ₄	[Cl-C ₆ H ₄ -(CH ₂) ₂ NH ₃] ₂ CdCl ₄	
Formula weight	745.30	567.45	
Crystal system	Orthorhombic	Monoclinic	
Space group	Pbcn	$P2_{1}/c$	
<i>a</i> (Å)	7.917(3)	18.8581(14)	
<i>b</i> (Å)	7.942(4)	7.6030(6)	
<i>c</i> (Å)	37.185(13)	7.6418(6)	
α (°)	90	90	
β (°)	90	99.102(2)	
γ (°)	90	90	
$V(Å^3)$	2338.1(17)	1081.87(14)	
Ζ	4	2	
Density (g/cm ³)	2.117	1.742	
m (mm ⁻¹)	8.002	1.753	
F (000)	1416.0	564.0	
Data/restraints/parameters	2691/0/115	2470/0/116	
GOF	1.257	1.153	
$R_1, wR_2 [I \ge 2\sigma(I)]$	$R_1 = 0.0790,$	$R_1 = 0.0403,$	
	$wR_2 = 0.1972$	$wR_2 = 0.1078$	
R_1 , wR_2 (all data)	$R_1 = 0.0946,$	$R_1 = 0.0447,$	
	$wR_2 = 0.2050$	$wR_2 = 0.1125$	
$\Delta \rho_{max} / \Delta \rho_{min} (e Å^{-3})$	1.09/-2.30	1.93/-0.59	
CCDC	2263024	2263054	

 Table S1. The crystallographic data and structure refinements at room temperature.

Table S2. Intermolecular hydrogen bond lengths (Å) and angles $(^{0})$ for 1.

D–H···A	D–H	Н…А	D····A	∠D−H…A
N1–H1A…Br2	0.89	2.69	3.343(11)	131
N1-H1B…Br1	0.89	2.86	3.695(11)	156
N1-H1C···Br1	0.89	2.58	3.466(11)	171

D−H…A D…A D-H Н…А ∠D−H…A N1-H1A···Cl2 0.89 2.50 3.196(4) 135 N1-H1B····Cl3 0.89 2.69 3.479(4) 148 N1-H1C···Cl3 0.89 2.45 3.332(4) 169

Table S3. Intermolecular hydrogen bond lengths (Å) and angles (°) for 2.

Calculation of ΔS and N

In the heating cycle mode $\Delta S_1 = R \ln N_1$

$$\Delta S_{1} = \int_{T_{2}}^{T} \frac{dT}{T} dT$$

$$\approx \frac{\Delta H}{T_{c}}$$

$$= \frac{3.150g^{-1}J \times 745.30mol^{-1}g}{335K}$$

$$= 7.01J \cdot mol^{-1} \cdot K^{-1}$$

$$N_{1} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{7.01J \cdot mol^{-1} \cdot K^{-1}}{8.314J \cdot mol^{-1} \cdot K^{-1}})$$

$$= 2.32$$

In the cooling cycle mode $\Delta S_2 = R \ln N_2$

$$\Delta S_{2} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T_{c}}$$

$$= \frac{2.990g^{-1}J \times 745.30mol^{-1}g}{323K}$$

$$= 6.90J \cdot mol^{-1} \cdot K^{-1}$$

$$N_{2} = \exp(\frac{\Delta S_{2}}{R}) = \exp(\frac{6.90J \cdot mol^{-1} \cdot K^{-1}}{8.314J \cdot mol^{-1} \cdot K^{-1}})$$

$$= 2.29$$

In the heating cycle mode $\Delta S_{1} = R \ln N_{1}$ $\Delta S_{1} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT$ $\approx \frac{\Delta H}{T_{c}}$ $= \frac{6.929 g^{-1} J \times 567.45 mol^{-1} g}{356 K}$ $= 11.04 J \cdot mol^{-1} \cdot K^{-1}$ $N_{1} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{11.04 J \cdot mol^{-1} \cdot K^{-1}}{8.314 J \cdot mol^{-1} \cdot K^{-1}})$ = 3.77

In the cooling cycle mode $\Delta S_2 = R \ln N_2$

$$\Delta S_{2} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T_{c}}$$

$$= \frac{5.790 g^{-1} J \times 567.45 mol^{-1} g}{325 K}$$

$$= 10.11 J \cdot mol^{-1} \cdot K^{-1}$$

$$N_{2} = \exp(\frac{\Delta S_{2}}{R}) = \exp(\frac{10.11 J \cdot mol^{-1} \cdot K^{-1}}{8.314 J \cdot mol^{-1} \cdot K^{-1}})$$

$$= 3.37$$