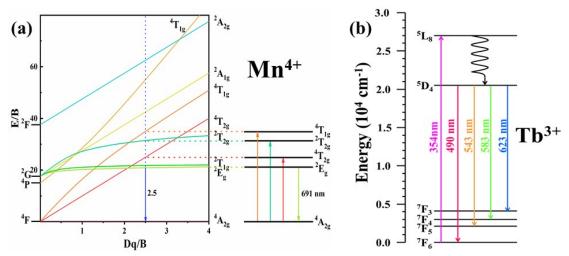
Supplementary Information

Designing dual-emission phosphors for temperature warning

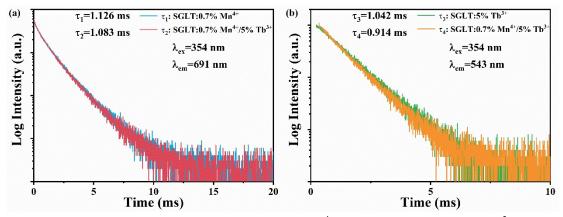
indication and dual-mode luminescence thermometry

Li Li^{a*}, Xinji Li^b, Zhaojie Wu^a, Yongbin Hua^c, Xianju Zhou^a, Yongjie Wang^a,


Zhongmin Cao^a, Sha Jiang^a, Guotao Xiang^a, Jae Su Yu^{c*}

^aSchool of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China

^bSchool of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China


^cDepartment of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea

Keywords: Dual-emission center, LIR, Lifetime, Luminescence thermometry

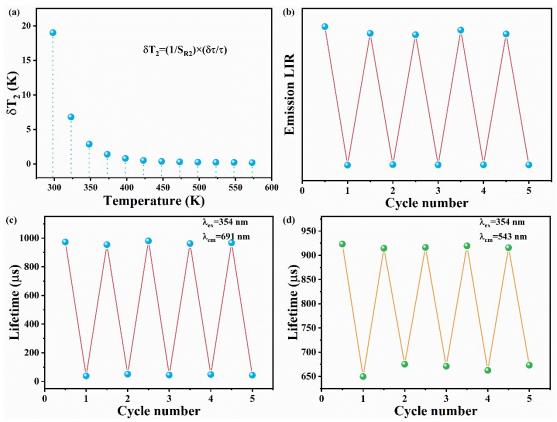


Fig. S1. (a) Tanabe-Sugano energy-level diagram of Mn4⁴⁺ in an octahedral crystal field. (b) Simplify energy transfer process from Tb³⁺.

^{*} Corresponding author. Li Li; E-mail: <u>lilic@cqupt.edu.cn</u>. Jae Su Yu; E-mail: jsyu@khu.ac.kr.

Fig. S2. The fluorescence decay curves of (a) Mn^{4+} ions at 691nm and (b) Tb^{3+} ions at 543nm are excitation at 354nm.

Fig. S3. (a) Temperature uncertainty based on lifetime monitoring at 691 nm under excitation at 354nm. (b) LIR stability of the SGLT: $0.7\% Mn^{4+}/5\% Tb^{3+}$ phosphor under the 354nm excitation. Lifetime stability of the SGLT: $0.7\% Mn^{4+}/5\% Tb^{3+}$ phosphor monitoring at (c) 691 nm and (d) 543 nm under excitation at 354nm.