Supporting Information for:

Examining the Reactivity of Tris(*ortho*carboranyl)borane with Lewis Bases and Application in Frustrated Lewis Pair Si-H Bond Cleavage

Kanika Vashisth, Sanjay Dutta, Manjur O. Akram and Caleb D. Martin

Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798.

Table of Contents

NMR and IR spectra	S3
X-ray Crystallographic details	

NMR and IR spectra:

Figure S-1: Stacked ¹H NMR (400 MHz) spectra of **EtOAc**·**B***o***Cb**₃ with varying concentration (5, 10, 20, 50, and 100 equivalents) of EtOAc in CDCl₃ (*corresponds to the diagnostic C-H resonance on the *ortho*-carbon).

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 (ppm)

Figure S-2: Stacked ¹¹B NMR (128 MHz) spectra of **EtOAc**·**B***o***Cb**₃ with varying concentration (5, 10, 20, 50, and 100 equivalents) of EtOAc in CDCl₃.

Figure S-4: ${}^{13}C{}^{1}H$ NMR (101 MHz) spectrum of **2,6-(CH₃)₂C₆H₃NC·B**oCb₃ in CDCl₃.

Figure S-5: ¹¹B{¹H} NMR (128 MHz) spectrum of **2,6-(CH₃)₂C₆H₃NC·B***o***Cb₃** in CDCl₃.

Figure S-6: ¹¹B NMR (128 MHz) spectrum of **2,6-(CH₃)₂C₆H₃NC·B***o***Cb₃** in CDCl₃.

Figure S-7: FT-IR spectrum of 2,6-(CH₃)₂C₆H₃NC·BoCb₃.

Figure S-8: ¹H NMR (400 MHz) spectrum of [Me₃PSiEt₃][HBoCb₃] in CDCl₃ (* residual benzene).

Figure S-9: ¹³C{¹H} NMR (101 MHz) spectrum of [Me₃PSiEt₃][HBoCb₃] in CDCl₃ (* residual benzene).

Figure S-11: ¹¹B NMR (128 MHz) spectrum of [Me₃PSiEt₃][HBoCb₃] in CDCl₃.

0 (ppm) 90 80 70 60 50 40 30 20 10 -20 -70 -80 -90 -10 -30 -40 -50 -60

ΜМ

Figure S-12: ³¹P{¹H} NMR (162 MHz) spectrum of [Me₃PSiEt₃][HBoCb₃] in CDCl₃.

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 (ppm)

Figure S-13: ¹H NMR (400 MHz) spectrum of [Ph₃PSiEt₃][HBoCb₃] in CDCl₃ (* residual benzene).

Figure S-14: ¹³C{¹H} NMR (101 MHz) spectrum of [Ph₃PSiEt₃][HBoCb₃] in CDCl₃ (* residual benzene).

Figure S-16: ¹¹B NMR (128 MHz) spectrum of [Ph₃PSiEt₃][HBoCb₃] in CDCl₃.

0 (ppm) 90 80 70 30 20 10 -10 -20 60 50 40 -30 -60 -70 -80 -90 -40 -50

Figure S-17: ³¹P{¹H} NMR (162 MHz) spectrum of [Ph₃PSiEt₃][HBoCb₃] in CDCl₃.

Figure S-18: FT-IR spectrum of [Ph₃PSiEt₃][HBoCb₃].

Figure S-19: ¹H NMR (400 MHz) spectrum of [**Cy₃PSiEt₃**][**HB***o***Cb₃**] in CD₂Cl₂ (* residual benzene).

Figure S-20: ¹³C{¹H} NMR (101 MHz) spectrum of [Cy₃PSiEt₃][HBoCb₃] in CD₂Cl₂ (* residual benzene).

Figure S-22: ¹¹B NMR (128 MHz) spectrum of [Cy₃PSiEt₃][HBoCb₃] in CD₂Cl₂.

-40 (ppm) 140 120 100 80 60 40 -120 -140 -160 -180 -200 -220 -240 20 -20 -60 -80 -100 0

Figure S-24: FT-IR spectrum of [Cy₃PSiEt₃][HBoCb₃].

Figure S-25: ¹H NMR (400 MHz) spectrum of [(*p*-Cl-C₆H₄)₃PSiEt₃][HBoCb₃] in CDCl₃.

Figure S-26: ¹³C{¹H} NMR (101 MHz) spectrum of [(*p*-Cl-C₆H₄)₃PSiEt₃][HB*o*Cb₃] in CDCl₃ (* residual benzene).

(ppm) -10

Figure S-28: ¹¹B NMR (128 MHz) spectrum of [(p-Cl-C₆H₄)₃PSiEt₃][HBoCb₃] in CDCl₃.

0 (ppm) 90 80 70 60 50 40 30 20 10 -20 -30 -60 -70 -80 -90 -10 -40 -50

Figure S-29: ³¹P{¹H) NMR (162 MHz) spectrum of $[(p-Cl-C_6H_4)_3PSiEt_3][HBoCb_3]$ in CDCl₃.

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 (ppm)

Figure S-30: FT-IR spectrum of [(p-Cl-C₆H₄)₃P SiEt₃][HBoCb₃].

Figure S-31: ¹H NMR (400 MHz) spectrum of $[(o-tol)_3PSiEt_3][HBoCb_3]$ in CDCl₃ (* residual benzene and Δ residual *n*-pentane).

Figure S-32: ¹³C{¹H} NMR (101 MHz) spectrum of $[(o-tol)_3PSiEt_3][HBoCb_3]$ in CDCl₃ (Δ residual *n*-pentane).

Figure S-33: ¹¹B{¹H) NMR (128 MHz) spectrum of [(*o*-tol)₃PSiEt₃][HB*o*Cb₃] in CDCl₃.

0 (ppm) 90 80 70 60 50 40 30 20 10 -70 -80 -90 -10 -20 -30 -40 -50 -60

0 (ppm) 90 80 70 60 50 40 30 20 10 -80 -90 -10 -20 -30 -40 -50 -60 -70

иW

Figure S-35: ³¹P{¹H} NMR (162 MHz) spectrum of [(*o*-tol)₃PSiEt₃][HB*o*Cb₃] in CDCl₃.

Figure S-36: FT-IR spectrum of [(*o*-tol)₃PSiEt₃][HB*o*Cb₃].

Figure S-37: ¹H NMR (400 MHz) spectrum of [(*p*-F-C₆H₄)₃PSiEt₃][HBoCb₃] in CDCl₃ (* residual benzene).

Figure S-38: ¹³C{¹H} NMR (101 MHz) spectrum of $[(p-F-C_6H_4)_3PSiEt_3][HBoCb_3]$ in CDCl₃ (* residual benzene).

Figure S-39: ¹¹B{¹H) NMR (128 MHz) spectrum of $[(p-F-C_6H_4)_3PSiEt_3][HBoCb_3]$ in CDCl₃.

Figure S-40: ¹¹B NMR (128 MHz) spectrum of [(*p*-F-C₆H₄)₃PSiEt₃][HBoCb₃] in CDCl₃.

Figure S-41: ${}^{31}P{}^{1}H$ NMR (162 MHz) spectrum of [(*p*-F-C₆H₄)₃PSiEt₃][HBoCb₃] in CDCl₃.

---3.73

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 (ppm)

Marata Malana Andrea Marata Marata

-100 (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -80

Figure S-43: FT-IR spectrum of [(*p*-F-C₆H₄)₃PSiEt₃][HBoCb₃].

Figure S-44: ¹H NMR (400 MHz) spectrum of $[Et_3NSiEt_3][HBoCb_3]$ in CDCl₃ (∇ residual triethylamine).

Figure S-45: ¹³C{¹H} NMR (101 MHz) spectrum of [Et₃NSiEt₃][HBoCb₃] in CDCl₃.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 (ppm)

Figure S-46: ¹¹B{¹H) NMR (128 MHz) spectrum of [Et₃NSiEt₃][HBoCb₃] in CDCl₃. $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & &$

0 (ppm) 90 80 70 60 30 20 10 -70 -80 50 40 -10 -20 -30 -60 -90 40 -50

ΜМ

Figure S-48: FT-IR spectrum of [Et₃NSiEt₃][HBoCb₃].

Figure S-49: ${}^{19}F{}^{1}H$ NMR (376 MHz) spectrum obtained from the combination of [HBoCb₃] [Ph₃PSiEt₃] and B(C₆F₅)₃ in CDCl₃. (* Corresponds to free B(C₆F₅)₃).

Figure S-50: ¹¹B NMR (128 MHz) spectrum obtained from the combination of $[HBoCb_3]$ [Ph₃PSiEt₃] and B(C₆F₅)₃ in CDCl₃.

Figure S-51: Stacked ¹¹B NMR (128 MHz) spectrum obtained from the combination of $[NEt_4][HB(C_6F_5)_3]$ and $BoCb_3$ in CDCl₃ at 23 °C.(\bullet corresponds to the central boron of $BoCb_3$, \bullet to the BH cluster of $BoCb_3$, and \bullet corresponds to the central BH in $[HB(C_6F_5)_3]$).

Compound	EtOAc·BoCb ₃	2,6-	[Me ₃ PSiEt ₃][HBoCb ₃]	[Ph ₃ PSiEt ₃][HBoCb ₃]
		(CH3)2C6H3NC·B0Cb3		
CCDC	2259756	2259757	2259758	2259759
Empirical	$C_{10}H_{41}O_2B_{31}$	C15H42NB31	$C_{15}H_{58}B_{31}PSi$	C ₃₀ H ₆₄ B ₃₁ PSi
Formula				
FW (g/mol)	528.54	571.60	632.78	818.98
Crystal System	triclinic	triclinic	trigonal	trigonal
Space Group	P-1	P-1	$P-3C_1$	<i>R-3</i>
a (Å)	10.5389(9)	11.0762(5)	13.0069(3)	15.5559(7)
b (Å)	12.0167(10)	12.7163(5)	13.0069(3)	15.5559(7)
c (Å)	13.0713(9)	12.9783(5)	25.8322(8)	36.209(3)
α (deg)	67.038(3)	87.269(2)	90	90
β (deg)	81.962(3)	66.922(2)	90	90
γ (deg)	87.400(3)	78.596(2)	120	120
V (Å ³)	1509.2(2)	1647.58(12)	3784.8(2)	7588.2(9)
Ž	2	2	4	6
Dc (g cm ⁻³)	1.163	1.152	1.111	1.075
Radiation λ (Å)	0.71073	0.71073	0.71073	0.71073
Temp	150 K	150 K	150 K	150 K
R1 $[I \ge 2(\sigma)I]^a$	0.0417	0.0407	0.0550	0.0677
wR2 $(F^2)^{a}$	0.1067	0.1080	0.1373	0.1691
$GOF(S)^a$	1.097	1.049	1.154	1.116

Tuble b 1. It ruy erystanographie details	Table	S-1:	X-ray	crystal	lographic	details.
---	-------	------	-------	---------	-----------	----------

 ${}^{a}R1(F[I > 2(I)]) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR2(F^{2} [all data]) = \{[w(F_{o}^{2} - F_{c}^{2})^{2}]/[w(F_{o}^{2})^{2}]\}^{1/2}; S(all data) = [w(F_{o}^{2} - F_{c}^{2})^{2}/(n - p)]^{1/2} (n = no. of data; p = no. of parameters varied; w = 1/\sigma^{2} (F_{o}^{2}) + (aP)^{2} + bP]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ and a and b are constants suggested by the refinement program.