Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Synergistic effect of alkali metal doping and thiocyanate passivation

in CsPbBr₃ for HTM-free all-inorganic perovskite solar cells

Shiqiang Jiang ^{a,#}, Haojie Sui ^{a,#}, Benlin He ^{a,*}, Xinyi Zhang ^a, Zhihao Zong ^a, Haiyan

Chen^{a,*}, Qunwei Tang^{b,*}

^a School of Materials Science and Engineering, Ocean University of China, Qingdao

266100, PR China. E-mail: blhe@ouc.edu.cn, chenhaiyan@ouc.edu.cn

^b Institute of Carbon Neutrality, College of Chemical and Biological Engineering,

Shandong University of Science and Technology, Qingdao 266590, PR China. E-

mail: tangqunwei@jnu.edu.cn

[#] Shiqiang Jiang and Haojie Sui contributed equally to this work.

Fig. S1 XRD patterns of various CsPbBr₃ films.

Fig. S2 High-resolution XPS spectra of (a) Na 1s and (b) K 2p of the doped CsPbBr₃ films.

Fig. S3 High-resolution XPS spectra of S 2p of NaSCN and KSCN doped CsPbBr₃ films.

Fig. S4 FTIR spectra of Na/KSCN, Na/KSCN + CsBr and Na/KSCN + PbBr₂.

Fig. S5 The grain size distribution of various CsPbBr₃ films.

Fig. S6 (a)&(d) Tauc plots, (b)&(e) the secondary electron cutoff and (c)&(f) onset binding energies of NaSCN and KSCN doped CsPbBr₃ films.

Fig. S7 *J-V* curves of HTM-free CsPbBr₃ PSCs doped with (a) NaSCN and (b) KSCN

at different molar ratio.

Fig. S8 *J-V* curves of the CsPbBr₃ PSCs doped with (a) NaSCN and (b) KSCN under reverse and forward scanning. Hysteresis index (H-index) = (PCE_{reverse} - $PCE_{forward})/PCE_{reverse} \times 100\%$.

Fig. S9 The statistical distribution of PCE for different HTM-free CsPbBr₃ PSCs.

Devices	τ_1 (ns)	τ_2 (ns)	A_1	A_2	$ au_{\mathrm{ave}}\left(\mathrm{ns} ight)$
Pristine	0.11	3.97	72.12%	27.88%	0.15
with NaSCN	0.15	5.45	75.82%	24.18%	0.22
with KSCN	0.15	5.47	73.14%	26.86%	0.24

Table S1. TRPL decay carrier lifetimes parameters of excitonic transitions for variousCsPbBr3 films deposited on glass.

Devices	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm OC}$ (V)	FF (%)	PCE (%)
1% NaSCN	7.45	1.509	75.11	8.44
3% NaSCN	7.61	1.621	80.35	9.91
5% NaSCN	7.32	1.477	76.21	8.23
7% NaSCN	7.14	1.468	74.49	7.88

Table S2. Photovoltaic parameters of carbon-based HTM-free CsPbBr3 PSCs withNaSCN dopant at different molar ratio.

Devices	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm OC}$ (V)	FF (%)	PCE (%)
1% KSCN	7.29	1.488	75.48	8.18
3% KSCN	7.42	1.522	78.61	8.87
5% KSCN	7.74	1.624	82.57	10.38
7% KSCN	7.31	1.521	76.79	8.53

Table S3. Photovoltaic parameters of carbon-based HTM-free CsPbBr3 PSCs withKSCN dopant at different molar ratio.

Cell configuration		$J_{\rm SC}$ (mA cm ⁻²)	FF (%)	PCE (%)	Ref.
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ - Na(K)SCN/Carbon		7.74	82.57	10.38	This work
$FTO/c\text{-}TiO_2/m\text{-}TiO_2/\ CsPbBr_3\text{-}SnBr_2\ /Carbon$	1.370	7.66	82.22	8.63	S[1]
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /Carbon	1.220	7.40	84.10	7.37	S[2]
FTO/c-TiO ₂ /m-TiO ₂ / CsPbBr ₃ -Co/Carbon	1.380	7.48	84.00	8.37	S[3]
FTO/c-TiO ₂ /CsPbBr ₃ /spiro-OMeTAD/Au	1.500	5.60	62.00	5.40	S[4]
FTO/c-TiO ₂ /m-TiO ₂ /GQDs/CsPbBr ₃ /Carbon	1.458	8.12	82.10	9.72	S[5]
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr _{2.98} Cl _{0.02} / Carbon	1.571	7.47	82.93	9.73	S[6]
ITO/SnO ₂ /CsPbBr ₃ /PMMA/Carbon	1.580	7.93	76.51	9.60	S[7]
FTO/c-TiO ₂ /CsPbBr ₃ /Carbon	1.375	7.76	79.31	8.47	S[8]
FTO/Sb-TiO ₂ /CsPbBr ₃ /Carbon	1.654	6.70	80.40	8.91	S[9]
FTO/c-TiO ₂ /CsPbBr ₃ /Carbon	1.490	6.89	79.00	8.11	S[10]
FTO/c-TiO ₂ /CsPbBr ₃ /Carbon	1.510	7.48	84.49	9.55	S[11]
FTO/c-TiO ₂ /CsPbBr ₃ /Carbon	1.380	8.81	75.00	9.11	S[12]
$FTO/c\text{-}TiO_2/m\text{-}TiO_2/CsPb_{9.875}Sn_{0.125}Br_3/carbon$	1.360	8.57	69.00	8.04	S[13]
FTO/c-TiO2/m-TiO2/CsPbBr3/Carbon	1.359	8.56	72.00	8.38	S[14]
FTO/c-TiO ₂ /T-CsPbBr ₃ /Carbon	1.595	7.52	81.41	9.82	S[15]
FTO/ TiO ₂ /CsPbBr ₃ /Carbon	1.555	7.96	83.00	10.27	S[16]
FTO/c-TiO ₂ /m-TiO ₂ /ASF/CsPbBr ₃ /Carbon	1.615	7.47	83.56	10.08	S[17]
FTO/c-TiO2/m-TiO2/CsPbBr3/DCC/Carbon	1.611	7.79	80.96	10.16	S[18]

Table S4. Summary of the photovoltaic parameters of the state-of-the-art CsPbBr3PSCs.

Devices	$J_{\rm MPP}~({ m mA~cm^{-2}})$	PCE _{MPP} (%)
Pristine	5.80	6.40
with NaSCN	6.87	9.55
with KSCN	7.41	10.23

Table S5. The stable output current density and PCE of various carbon-basedCsPbBr3 PSCs without HTMs at the voltage of maximum power point in Fig. 3f.

Samples	$V_{\mathrm{TFL}}\left(\mathrm{V} ight)$	$n_{\rm trap} \ (10^{14} \ {\rm cm}^{-3})$
Pristine	0.383	4.596
with NaSCN	0.197	2.364
with KSCN	0.172	2.064

Table S6. The V_{TFL} and n_{trap} values of various CsPbBr₃ films.

Devices	$R_{ m s}\left(\Omega~{ m cm}^2 ight)$	$R_{ m rec}~(\Omega~{ m cm}^2)$
Pristine	15.25	47.64
with NaSCN	12.88	67.94
with KSCN	10.29	75.32

Table S7. EIS parameters of various carbon-based HTM-free CsPbBr₃ PSCs.

Reference

- H. Guo, Y. Pei, J. Zhang, C. Cai, K. Zhou, Y. Zhu, Doping with SnBr₂ in CsPbBr₃ to enhance the efficiency of all-inorganic perovskite solar cells, J. Mater. Chem. C 7 (2019) 11234-11243
- [2] D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, One-step solution deposition of CsPbBr₃ based on precursor engineering for efficient all-inorganic perovskite solar cells, J. Mater. Chem. A 7 (2019) 22420-22428.
- [3] C. Wang, Y. Long, X. Liu, S. Fu, J. Wang, J. Zhang, Z. Hu, Y. Zhu, A dual promotion strategy of interface modification and ion doping for efficient and stable carbon-based planar CsPbBr₃ perovskite solar cells, J. Mater. Chem. C, 8 (2020) 17211-17221.
- [4] Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J.
 M. Ball, M. Prato, A. Petrozza, L. Manna, Strongly emissive perovskite nanocrystal inks for high-voltage solar cells, Nat. Energy 2 (2016) 16194-16200.
- [5] J. Duan, Y. Zhao, B. He, Q. Tang, High-purity inorganic perovskite films for solar cells with 9.72 % efficiency, Angew. Chem., Int. Ed. 57 (2018) 3787-3791.
- [6] X. Li, B. He, Z. Gong, J. Zhu, W. Zhang, H. Chen, Y. Duan, Q. Tang, Compositional engineering of chloride ion-doped CsPbBr₃ halides for highly efficient and stable all-inorganic perovskite solar cells, Sol. RRL 4 (2020) 2000362.

- [7] A. Tong, C. Zhu, H. Yan, C. Zhang, Y. Jin, Y. Wu, F. Cao, J. Wu, W. Sun, Defect control for high-efficiency all-inorganic CsPbBr₃ perovskite solar cells via hydrophobic polymer interface passivation, J. Alloy. Compd. 942 (2023) 169084
- [8] D. Wang, W. Li, Z. Du, G. Li, W. Sun, J. Wu, Z. Lan, Highly efficient CsPbBr₃ planar perovskite solar cells via additive engineering with NH₄SCN, ACS Appl. Mater. Interfaces 12 (2020) 10579-10587.
- [9] Y. Xu, J. Duan, X. Yang, J. Du, Y. Wang, Y. Duan, Q. Tang, Lattice-tailored low-temperature processed electron transporting materials boost the open-circuit voltage of planar CsPbBr₃ perovskite solar cells up to 1.654 V, J. Mater. Chem. A 8 (2020) 11859-11866.
- [10] X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y. Cheng, A. Hagfeldt, L. Sun, Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr₃ films with controllable morphology, J. Energy Chem. 46 (2019) 8-15.
- [11] S. Wang, F. Cao, W. Sun, C. Wang, Z. Yan, N. Wang, Z. Lan, J. Wu, A green Bi-solvent system for processing high-quality CsPbBr₃ films in efficient allinorganic perovskite solar cells, Mater. Today Phy. 22 (2022) 100614.
- [12] J. Bi, J. Chang, M. Lei, W. Zhang, F. Meng, G. Wang, T. Facile, Fabrication of high-quality CsPbBr₃ perovskite films for high-performance solar cells, ACS Appl. Mater. Interfaces 14 (2022) 48888-48896
- [13] G. Wang, J. Bi, J. Chang, M. Lei, H. Zheng, Y. Yan, Bandgap tuning of a CsPbBr₃ perovskite with synergistically improved quality via Sn²⁺ doping for

high-performance carbon-based inorganic perovskite solar cells, Inorg. Chem. Front., 9 (2022) 4359-4368

- [14] X. Zhao, C. Xu, X. Wang, J. Guo, M. Wu, Construction of multilevel network structured carbon nanofiber counter electrode and back interface engineering in all inorganic HTL-free perovskite solar cells, Colloid. Surface. A., 648 (2022) 129420
- [15] Z. Gong, B. He, J. Zhu, X. Yao, S. Wang, H. Chen, Y. Duan, Q. Tang, Tri-Brominated perovskite film management and multiple-ionic defect passivation for highly efficient and stable solar cells, Sol. RRL 5 (2021) 202000819.
- [16] Z. Zhang, W. Zhu, T. Han, T. Wang, W. Chai, J. Zhu, H. Xi, D. Chen, G. Lu, P. Dong, J. Zhang, C. Zhang, Y. Hao, Accelerated sequential deposition reaction via crystal orientation engineering for low-temperature, high-efficiency carbon-electrode CsPbBr₃ solar cells, Energy Environ. Mater. (0) 2023 e12524.
- [17] L. Cui, B. He, Y. Ding, J. Zhu, X. Yao, J. Ti, H. Chen, Y. Duan, Q. Tang, Multifunctional interface modifier ammonium silicofluoride for efficient and stable all-inorganic CsPbBr₃ perovskite solar cells, Chem. Eng. J., 431 (2022) 134193.
- [18] J. Zhu, Y. Liu, B. He, W. Zhang, L. Cui, S. Wang, H. Chen, Y. Duan, Q. Tang, Efficient interface engineering of N, N'-Dicyclohexylcarbodiimide for stable HTMs-free CsPbBr₃ perovskite solar cells with 10.16%-efficiency, Chem. Eng. J. 428 (2022) 131950.