Electronic Supplementary Information for

Models of the putative antimony(V)-diolate motifs in

antileishmanial pentavalent antimonial drugs

Brent Lindquist-Kleissler and Timothy C. Johnstone*

Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States.

* Correspondence to: johnstone@ucsc.edu

CONTENTS

Page

Table S1 – Refinement details for crystal structures	S3
Figure S1 – Crystal structure of hydrolysis decomposition product	S4
Figure S2 – Crystal structure of Sb(tol) ₃	S4
Figure S3 – Overlays of crystal structures of 1-6	S5
Figure S4 – Stacked ¹ H NMR spectra of free butanediols, 2, and 4	S5
Figure S5 – Stacked ¹ H NMR spectra of free (S)-1,2-propanediol and 6	S6
Figure S6 – NMR spectra of 1	S 7
Figure S7 – NMR spectra of 2	S 8
Figure S8 – NMR spectra of 3	S9
Figure S9 – NMR spectra of 4	S10
Figure S10 – NMR spectra of 5	S 11
Figure S11 – NMR spectra of 6	S12

	Sb(tol) ₃	$[(tol)_3Sb(\mu-C_4H_8O_2)]_2O$
Formula	$C_{21}H_{21}Sb$	$C_{36}H_{44}O_5Sb_2$
FW	395.13	800.21
T (K)	101.1(6)	102(2)
λ (Å)	1.54184	1.54184
Crystal System	Trigonal	Orthorhombic
Space group	R3	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	12.6758(3)	12.17550(10)
<i>b</i> (Å)		13.5809(2)
<i>c</i> (Å)	19.8058(4)	20.6690(3)
Volume (Å ³)	2755.96(14)	3417.71(8)
Ζ	6	4
$ ho_{calc} (Mg/m^3)$	1.428	1.555
Size (mm ³)	0.21×0.14×0.04	0.12×0.06×0.05
θ range (°)	4.605-67.036	3.895-67.684
Total data	6111	51012
Unique data	1099	7095
Parameters	68	397
Completeness	100.0%	100.0%
$R_{\rm int}$	4.87%	5.45%
$R_1(\mathrm{I}>2\sigma)$	2.11%	3.25%
R_1 (all data)	2.16%	3.39%
wR_2 (I > 2 σ)	5.41%	8.52%
wR_2 (all data)	5.43%	8.64%
S	1.098	1.078
Flack <i>x</i>	—	-0.015(9)

Table S1. Refinement Details for the Crystal Structures of $Sb(tol)_3$ and $[(tol)_3Sb(\mu-C_4H_8O_2)]_2O$.

Figure S1. Thermal ellipsoid plot (50% probability, H atoms as spheres of arbitrary radius) of a hydrolysis decomposition product observed to form during the synthesis of butanediolate complexes. Color code: Sb teal, O red, C black, H white.

Figure S2. Thermal ellipsoid plot (50% probability, H atoms as spheres of arbitrary radius) of Sb(tol)₃. Color code: Sb teal, C black, H white.

Figure S3. Overlays of: a) 2 (blue) and 3 (pink). b) 4 (blue) and 5 (pink). c) 1 (purple), 4 (blue), and 6 (green).

Figure S4. Stacked ¹H NMR spectra showing shift in backbone CH resonances. Color code: unbound 2R, 3S-butanediol purple, compound **2** pink, unbound 2R, 3R-butanediol blue, compound **4** red.

Figure S5. *Top (blue)*: ¹H NMR spectrum of free (*S*)-1,2-propanediol. Peaks are arbitrarily labeled based on the labelling scheme used for the Newman projections. *Middle (red)*: ¹H NMR spectrum of **6**. *Bottom*: Newman projections displaying conformational change of (*S*)-1,2-propanediol upon binding to Sb.

 $H_{b}^{/}$

Ήc

Figure S6. *Top*: ¹H NMR (500 MHz, CDCl₃) spectrum of **1**. *Bottom*: ¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of **1**.

Figure S7. *Top*: ¹H NMR (500 MHz, CDCl₃) spectrum of **2**. *Bottom*: ¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of **2**.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift (ppm)

Figure S8. *Top*: ¹H NMR (500 MHz, CDCl₃) spectrum of **3**. *Bottom*: ¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of **3**.

Figure S9. Top: ¹H NMR (500 MHz, CDCl₃) spectrum of 4. Bottom: ¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of 4.

Figure S10. Top: ¹H NMR (500 MHz, CDCl₃) spectrum of 5. Bottom: ${}^{13}C{}^{1}H$ NMR (126 MHz,

CDCl₃) spectrum of 5.

Figure S11. Top: ¹H NMR (500 MHz, CDCl₃) spectrum of 6. Bottom: ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) spectrum of **6**.