Electronic Supplementary Material (ESI) for Dalton Transactions.

This journal is © The Royal Society of Chemistry 2023

The effect of conjugation degree of aromatic carboxylic acids

on electronic and photo-responsive behaviors of

naphthalenediimide-based coordination polymers

Ming Kang, Bohong Gao, Shimin Zhang, Pengfei Hao,* Gaopeng Li, Junju Shen and Yunlong Fu*

Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030031, China

Supplementary Information Contents

1. Figures	2
Fig. S1 Thermo-gravimetric (TG) and Differential scanning calorimetry (OSC) curves of 1-3 2
Fig. S2 Kubelka-Munk transformed reflectivity vs energy of complexes 1	- 3 2
Fig. S3 The switching cycles of coloration-decoloration processes of 2 (7	59 nm) upon
alternating Xe light illumination and thermal treatment	3
Fig. S4 FT-IR spectra of 1-3 as-synthesized samples and after irradiation	samples3
Fig. S5 PXRD patterns of 1-3 simulated from the X-ray single-crystal stru	ctures, as-
synthesized samples and after irradiation samples.	4
Fig. S6 The EPR spectra of 1, 1P-UV and 1P-UV-heating (a), 2, 2P-UV and	2P -UV-heating (b)
and 3 , 3P -UV and 3P -UV-heating (c)	4
Fig. S7 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of	2 and 2P 5
2. Tables	6
Table S1. Crystallographic data and refinement of 1-3.	6
Table S2. Selected bond lengths (Å) and angles (°) for 1-3	7
Table S3. Hydrogen bonds of for 1-3 (Å and °)	9

Fig. S1 Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 1-3.

Fig. S2 Kubelka-Munk transformed reflectivity vs energy of complexes 1-3.

Fig. S3 The switching cycles of coloration-decoloration processes of 2 (759 nm) upon alternating Xe light illumination and thermal treatment.

Fig. S4 FT-IR spectra of 1-3 as-synthesized samples and after irradiation samples.

Fig. S5 PXRD patterns of 1-3 simulated from the X-ray single-crystal structures, as-

synthesized samples and after irradiation samples.

Fig. S6 The EPR spectra of 1, 1P-UV and 1P-UV-heating (a), 2, 2P-UV and 2P-UVheating (b) and 3, 3P-UV and 3P-UV-heating (c).

Fig. S7 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 2 and 2P.

Fig. S8 The dihedral angle between the two benzene rings of the 2,2'-BPDC²⁻ (a), (b) , 4,4'-BPDC²⁻ (c) and 4,4'-SDC²⁻ (d).

Compound	1	2	3
CCDC code	2263419	2263420	2263421
Temperature (K)	293(2)	293(2)	293(2)
Empirical formula	$C_{40}H_{24}CdN_4O_8$	$C_{68}H_{53}Cd_2N_9O_{18}$	$C_{42}H_{26}CdN_4O_8$
Formula weight	801.03	1508.99	827.07
Crystal size (mm)	$0.25 \times 0.08 \times 0.06$	0.341 ×0.259 × 0.058	$0.24 \times 0.16 \times 0.06$
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/c	C2/c	C2/c
<i>a</i> (Å)	9.8114(4)	37.305(2)	15.2689(9)
<i>b</i> (Å)	14.3212(7)	12.4534(8)	8.7100(5)
<i>c</i> (Å)	23.6696(11)	27.1003(17)	26.6400(15)
α (°)	90	90	90
β (°)	99.800(4)	103.182(2)	93.109(2)
γ (°)	90	90	90
<i>V</i> (ų)	3277.3(3)	12258.4(13)	3537.7(4)
Ζ	4	8	4
$D_c ({ m g}{ m cm}^{-3})$	1.623	1.635	1.553
μ (mm ⁻¹)	0.731	0.779	0.680
F (000)	1616.0	6112.0	1672.0
Reflections collected	18496	111451	21567
Independent reflections	8981	15319	4384
R _{int}	0.0418	0.0390	0.0261
Goodness-of-fit on F ²	1.010	1.022	1.107
R_1/wR_2 , $[I \ge 2\sigma(I)]^{a,b}$	0.0553/0.0837	0.0358/0.0819	0.0308/0.0787
R_1/wR_2 , (all data)	0.1121/0.1016	0.0588/0.0918	0.0380/0.0816

2. Tables

Table S1. Crystallographic data and refinement of 1-3.

^{*a*} $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$

 ${}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$

Compound 1			
Cd1-N1	2.395(3)	Cd1-O2	2.302(2)
Cd1-N4#2	2.373(3)	Cd1-O3#1	2.328(2)
Cd1-O1	2.411(3)	Cd1-O4#1	2.401(3)
N1-Cd1-O1	83.55(10)	N42-Cd1-N1	81.01(10)
N1-Cd1-O4#1	81.26(10)	N42-Cd1-O1	85.53(11)
#1 -x,+y,-1/2-z; #2 -1+x,1+y,+z			

Table S2. Selected bond lengths (Å) and angles (°) for 1-3.

Compound 2			
Cd1-O1	2.3467(17)	Cd2-O5	2.340(3)
Cd1-O2	2.507(2)	Cd2-O5#3	2.340(3)
Cd1-07	2.3306(17)	Cd2-O6	2.285(3)
Cd1-O8	2.4117(16)	Cd3-O10#1	2.3417(16)
Cd1-O9	2.4152(17)	Cd3-O10	2.3416(16)
Cd1-N1	2.358(2)	Cd3-O11	2.4304(18)
Cd1-N4#2	2.327(2)	Cd3-O11#1	2.4304(18)
Cd2-O3	2.384(2)	Cd3-O12	2.271(3)
Cd2-O3#3	2.384(2)	Cd3-N7#1	2.393(2)
Cd2-O4#3	2.388(2)	Cd3-N7	2.393(2)
Cd2-O4	2.388(2)		
08-Cd1-O9	54.16(6)	O6-Cd2-O5	93.12(8)
08-Cd1-O2	136.26(6)	O5#3-Cd2-O3	90.77(9)
O9-Cd1-O2	82.12(6)	O5#3-Cd2-O3#3	90.17(9)
01-Cd1-O8	163.80(7)	O5-Cd2-O3#3	90.78(9)
01-Cd1-O9	133.29(6)	O5-Cd2-O3	90.17(9)
01-Cd1-O2	53.54(6)	O5-Cd2-O4#3	85.15(10)
O1-Cd1-N1	82.87(7)	O5-Cd2-O4	90.41(10)
07-Cd1-O8	87.50(6)	O5#3-Cd2-O4	85.15(10)
07-Cd1-O9	141.66(6)	O5#3-Cd2-O4#3	90.41(10)
07-Cd1-O1	83.78(7)	O5-Cd2-O5#3	173.77(15)
07-Cd1-O2	136.22(6)	O10-Cd3-O10#1	167.72(9)

07-Cd1-N1	87.69(7)	O10-Cd3-O11	54.69(6)
N1-Cd1-O8	83.15(7)	O10#1-Cd3-O11	137.55(6)
N1-Cd1-O9	88.01(7)	O10#1-Cd3-O11#1	54.69(6)
N1-Cd1-O2	95.26(7)	O10-Cd3-O11#1	137.55(6)
N4#2-Cd1-O8	84.92(7)	O10-Cd3-N7	93.18(7)
N4#2-Cd1-O9	86.49(7)	O10#1-Cd3-N7	87.69(7)
N4#2-Cd1-O1	108.65(7)	O10#1-Cd3-N7#1	93.18(7)
N4#2-Cd1-O7	89.98(7)	O10-Cd3-N7#1	87.69(7)
N4#2-Cd1-O2	94.62(7)	O11#1-Cd3-O11	83.32(8)
N4#2-Cd1-N1	167.93(7)	N7#1-Cd3-O11	88.73(7)
O3-Cd2-O3#3	162.53(11)	N7#1-Cd3-O11#1	85.16(7)
O3#3-Cd2-O4	143.16(7)	N7-Cd3-O11	85.16(7)
O3#3-Cd2-O4#3	54.27(7)	N7-Cd3-O11#1	88.73(7)
O3-Cd2-O4	54.27(7)	N7#1-Cd3-N7	171.82(11)
O3-Cd2-O4#3	143.16(7)	O12-Cd3-O10	83.86(4)
O4#3-Cd2-O4	89.17(10)	O12-Cd3-O10#1	83.86(4)
O6-Cd2-O3#3	81.26(5)	O12-Cd3-O11#1	138.34(4)
O6-Cd2-O3	81.26(5)	O12-Cd3-O11	138.34(4)
O6-Cd2-O4	135.41(5)	012-Cd3-O7	94.09(6)
O6-Cd2-O4#3	135.41(5)	O12-Cd3-O7#1	94.09(6)
O6-Cd2-O5#3	93.12(8)		
#1 -x,+y,-1/2-z; #2 +x,-y,1	/2+z; #3 1-x,+y,3/2-z		

	Compo	ound 3	
Cd1 N1#1	2.3209(18)	Cd1-O1#1	2.2795(17)
Cd1-N1	2.3210(18)	Cd1-O2#1	2.3665(18)
Cd1-O1	2.2796(17)	Cd1-O2	2.3666(18)
N11-Cd1-N1	81.44(10)	N1-Cd1-O2#1	102.90(7)
N11-Cd1-O2#1	89.27(7)	N1-Cd1-O2	89.27(7)
#1 1-x,+y,1/2-z			

1 0	· · ·			
	Corr	pound 1		
D-H…A	d(D-H)	d(H···A)	d(D…A)	<(DHA)
C15-H15…O4#1	0.93	2.36	3.026(5)	128.8
C19-H19…O1	0.93	2.47	3.098(4)	124.7
C20-H20A…O3	0.97	2.32	3.259(5)	162.2
C35-H35A…O2#2	0.97	2.60	3.479(4)	151.4
C35-H35B…O5#3	0.97	2.65	3.383(5)	133.0
C39-H39…O1#4	0.93	2.54	3.187(5)	127.2
#1 1-x.1/2+v.3/2-z: #2 2-x1/2+v.3/2-z: #3 2-xv.1-z: #4 1+x1+v.+z				

π1 1 ⁻ λ,1/2 ' Ϋ,3/2 ⁻ 2, π2 2	<u>,-1/2-</u>	Ζ-۸,-γ,1-2, #4 1 Α,-1 Ι	γ, ' Z	
		Compound 2		
D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
07-H7A…O9#1	0.85	2.01	144.6	2.750(2)
O7-H7B…O2#1	0.85	2.09	143.1	2.818(3)
O6-H6B…O11#2	0.86	1.95	157.9	2.765(3)
O6-H6A…O11#3	0.86	1.95	158.6	2.765(3)
O5-H5A…O19#4	0.81	1.88	175.5	2.691(5)
O12-H12B…O4#5	0.85	1.93	154.0	2.716(3)

#1 1/2-x,1/2+y,1/2-z; #2 1/2-x,1/2+y,1/2-z; #3 1/2+x,-1/2+y,1+z; #4 1/2-x,1/2-y,1-z; #5 1/2+x,-1/2+y, -1+z

1.96

148.2

2.716(3)

0.84

	Con	pound 3		
D-H…A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
C1-H1…O3#1	0.93	2.51	3.176(3)	128.3
#1 1/2-x,1/2+y,1/2-z				

Table S3. Hydrogen bo	ds of for 1-3 (Å and °)
-----------------------	-------------------------

O12-H12A…O4#2