The effect of conjugation degree of aromatic carboxylic acids on electronic and photo-responsive behaviors of naphthalenediimide-based coordination polymers

Ming Kang, Bohong Gao, Shimin Zhang, Pengfei Hao,* Gaopeng Li, Junju Shen and Yunlong Fu*

Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030031, China

Supplementary Information Contents

1. Figures .........................................................................................................................................2
   Fig. S1 Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 1-3. 2
   Fig. S2 Kubelka-Munk transformed reflectivity vs energy of complexes 1-3.........................2
   Fig. S3 The switching cycles of coloration-decoloration processes of 2 (759 nm) upon alternating Xe light illumination and thermal treatment.........................................................3
   Fig. S4 FT-IR spectra of 1-3 as-synthesized samples and after irradiation samples..............3
   Fig. S5 PXRD patterns of 1-3 simulated from the X-ray single-crystal structures, as-synthesized samples and after irradiation samples.................................................................4
   Fig. S6 The EPR spectra of 1, 1P-UV and 1P-UV-heating (a), 2, 2P-UV and 2P-UV-heating (b) and 3, 3P-UV and 3P-UV-heating (c) .................................................................4
   Fig. S7 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 2 and 2P............5

2. Tables ...........................................................................................................................................6
   Table S1. Crystallographic data and refinement of 1-3. ..........................................................6
   Table S2. Selected bond lengths (Å) and angles (°) for 1-3......................................................7
   Table S3. Hydrogen bonds of for 1-3 (Å and °) .................................................................9
1. Figures

Fig. S1 Thermo-gravimetric (TG) and Differential scanning calorimetry (DSC) curves of 1-3.

Fig. S2 Kubelka-Munk transformed reflectivity vs energy of complexes 1-3.
Fig. S3 The switching cycles of coloration-decoloration processes of 2 (759 nm) upon alternating Xe light illumination and thermal treatment.

Fig. S4 FT-IR spectra of 1-3 as-synthesized samples and after irradiation samples.
Fig. S5 PXRD patterns of 1-3 simulated from the X-ray single-crystal structures, as-synthesized samples and after irradiation samples.

Fig. S6 The EPR spectra of 1, 1P-UV and 1P-UV-heating (a), 2, 2P-UV and 2P-UV-heating (b) and 3, 3P-UV and 3P-UV-heating (c).
Fig. S7 Cd 3d (a), C 1s (b), N 1s (c) and O 1s (d) XPS core-level spectra of 2 and 2P.

Fig. S8 The dihedral angle between the two benzene rings of the 2,2'-BPDC$^2-$ (a), 4,4'-BPDC$^2-$ (c) and 4,4'-SDC$^2-$ (d).
2. Tables

Table S1. Crystallographic data and refinement of 1-3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC code</td>
<td>2263419</td>
<td>2263420</td>
<td>2263421</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>$\text{C}<em>{40}\text{H}</em>{24}\text{CdN}<em>{4}\text{O}</em>{8}$</td>
<td>$\text{C}<em>{68}\text{H}</em>{32}\text{CdN}<em>{9}\text{O}</em>{18}$</td>
<td>$\text{C}<em>{42}\text{H}</em>{26}\text{CdN}<em>{4}\text{O}</em>{8}$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>801.03</td>
<td>1508.99</td>
<td>827.07</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.25 × 0.08 × 0.06</td>
<td>0.341 × 0.259 × 0.058</td>
<td>0.24 × 0.16 × 0.06</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1/c$</td>
<td>$C2/c$</td>
<td>$C2/c$</td>
</tr>
<tr>
<td>$a$ (Å)</td>
<td>9.8114(4)</td>
<td>37.305(2)</td>
<td>15.2689(9)</td>
</tr>
<tr>
<td>$b$ (Å)</td>
<td>14.3212(7)</td>
<td>12.4534(8)</td>
<td>8.7100(5)</td>
</tr>
<tr>
<td>$c$ (Å)</td>
<td>23.6696(11)</td>
<td>27.1003(17)</td>
<td>26.6400(15)</td>
</tr>
<tr>
<td>$\alpha$ (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>$\beta$ (°)</td>
<td>99.800(4)</td>
<td>103.182(2)</td>
<td>93.109(2)</td>
</tr>
<tr>
<td>$\gamma$ (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>$V$ (Å$^3$)</td>
<td>3277.3(3)</td>
<td>12258.4(13)</td>
<td>3537.7(4)</td>
</tr>
<tr>
<td>$Z$</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>$D_c$ (g cm$^{-3}$)</td>
<td>1.623</td>
<td>1.635</td>
<td>1.553</td>
</tr>
<tr>
<td>$\mu$ (mm$^{-1}$)</td>
<td>0.731</td>
<td>0.779</td>
<td>0.680</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>1616.0</td>
<td>6112.0</td>
<td>1672.0</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>18496</td>
<td>111451</td>
<td>21567</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>8981</td>
<td>15319</td>
<td>4384</td>
</tr>
<tr>
<td>$R_{	ext{int}}$</td>
<td>0.0418</td>
<td>0.0390</td>
<td>0.0261</td>
</tr>
<tr>
<td>Goodness-of-fit on $F^2$</td>
<td>1.010</td>
<td>1.022</td>
<td>1.107</td>
</tr>
<tr>
<td>$R_1/wR_2$, ($I \geq 2\sigma(I)$)$^{a,b}$</td>
<td>0.0553/0.0837</td>
<td>0.0358/0.0819</td>
<td>0.0308/0.0787</td>
</tr>
<tr>
<td>$R_1/wR_2$, (all data)</td>
<td>0.1121/0.1016</td>
<td>0.0588/0.0918</td>
<td>0.0380/0.0816</td>
</tr>
</tbody>
</table>

$^a R_1 = \sum |F_o| - |F_c|/\sum |F_o|$

$^b wR_2 = [\sum w(F_o^2 - F_c^2)^2/\sum w(F_o^2)]^{1/2}$
<table>
<thead>
<tr>
<th>Compound</th>
<th>Cd1-N1</th>
<th>Cd1-O2</th>
<th>Cd1-O7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.395(3)</td>
<td>2.302(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.373(3)</td>
<td>2.328(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.411(3)</td>
<td>2.401(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83.55(10)</td>
<td>81.01(10)</td>
<td>85.53(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Cd1-O1</td>
<td>Cd2-O5</td>
<td>Cd2-O3</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>2.3467(17)</td>
<td>2.340(3)</td>
<td>2.384(2)</td>
</tr>
<tr>
<td></td>
<td>2.507(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3306(17)</td>
<td>2.285(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4117(16)</td>
<td>2.3417(16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4152(17)</td>
<td>2.3416(16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.358(2)</td>
<td></td>
<td>2.4304(18)</td>
</tr>
<tr>
<td></td>
<td>2.327(2)</td>
<td></td>
<td>2.4304(18)</td>
</tr>
<tr>
<td></td>
<td>2.384(2)</td>
<td></td>
<td>2.271(3)</td>
</tr>
<tr>
<td></td>
<td>2.384(2)</td>
<td></td>
<td>2.393(2)</td>
</tr>
<tr>
<td></td>
<td>2.388(2)</td>
<td></td>
<td>2.388(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.16(6)</td>
<td></td>
<td>93.12(8)</td>
</tr>
<tr>
<td></td>
<td>136.26(6)</td>
<td></td>
<td>90.77(9)</td>
</tr>
<tr>
<td></td>
<td>82.12(6)</td>
<td></td>
<td>90.17(9)</td>
</tr>
<tr>
<td></td>
<td>163.80(7)</td>
<td></td>
<td>90.78(9)</td>
</tr>
<tr>
<td></td>
<td>133.29(6)</td>
<td></td>
<td>90.17(9)</td>
</tr>
<tr>
<td></td>
<td>53.54(6)</td>
<td></td>
<td>85.15(10)</td>
</tr>
<tr>
<td></td>
<td>82.87(7)</td>
<td></td>
<td>90.41(10)</td>
</tr>
<tr>
<td></td>
<td>87.50(6)</td>
<td></td>
<td>85.15(10)</td>
</tr>
<tr>
<td></td>
<td>141.66(6)</td>
<td></td>
<td>90.41(10)</td>
</tr>
<tr>
<td></td>
<td>83.78(7)</td>
<td></td>
<td>173.77(15)</td>
</tr>
<tr>
<td></td>
<td>136.22(6)</td>
<td></td>
<td>167.72(9)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
<td>Bond</td>
<td>Distance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>O7-Cd1-N1</td>
<td>87.69(7)</td>
<td>O10-Cd3-O11</td>
<td>54.69(6)</td>
</tr>
<tr>
<td>N1-Cd1-O8</td>
<td>83.15(7)</td>
<td>O10#1-Cd3-O11</td>
<td>137.55(6)</td>
</tr>
<tr>
<td>N1-Cd1-O9</td>
<td>88.01(7)</td>
<td>O10#1-Cd3-O11#1</td>
<td>54.69(6)</td>
</tr>
<tr>
<td>N1-Cd1-O2</td>
<td>95.26(7)</td>
<td>O10-Cd3-O11#1</td>
<td>137.55(6)</td>
</tr>
<tr>
<td>N4#2-Cd1-O8</td>
<td>84.92(7)</td>
<td>O10-Cd3-N7</td>
<td>93.18(7)</td>
</tr>
<tr>
<td>N4#2-Cd1-O9</td>
<td>86.49(7)</td>
<td>O10#1-Cd3-N7</td>
<td>87.69(7)</td>
</tr>
<tr>
<td>N4#2-Cd1-01</td>
<td>108.65(7)</td>
<td>O10#1-Cd3-N7#1</td>
<td>93.18(7)</td>
</tr>
<tr>
<td>N4#2-Cd1-07</td>
<td>89.98(7)</td>
<td>O10-Cd3-N7#1</td>
<td>87.69(7)</td>
</tr>
<tr>
<td>N4#2-Cd1-02</td>
<td>94.62(7)</td>
<td>O11#1-Cd3-O11</td>
<td>83.32(8)</td>
</tr>
<tr>
<td>N4#2-Cd1-N1</td>
<td>167.93(7)</td>
<td>N7#1-Cd3-O11</td>
<td>88.73(7)</td>
</tr>
<tr>
<td>O3-Cd2-O3#3</td>
<td>162.53(11)</td>
<td>N7#1-Cd3-O11#1</td>
<td>85.16(7)</td>
</tr>
<tr>
<td>O3#3-Cd2-O4</td>
<td>143.16(7)</td>
<td>N7-Cd3-O11</td>
<td>85.16(7)</td>
</tr>
<tr>
<td>O3#3-Cd2-O4#3</td>
<td>54.27(7)</td>
<td>N7-Cd3-O11#1</td>
<td>88.73(7)</td>
</tr>
<tr>
<td>O3-Cd2-O4</td>
<td>54.27(7)</td>
<td>N7#1-Cd3-N7</td>
<td>171.82(11)</td>
</tr>
<tr>
<td>O3-Cd2-O4#3</td>
<td>143.16(7)</td>
<td>O12-Cd3-O10</td>
<td>83.86(4)</td>
</tr>
<tr>
<td>O4#3-Cd2-O4</td>
<td>89.17(10)</td>
<td>O12-Cd3-O10#1</td>
<td>83.86(4)</td>
</tr>
<tr>
<td>O6-Cd2-O3#3</td>
<td>81.26(5)</td>
<td>O12-Cd3-O11#1</td>
<td>138.34(4)</td>
</tr>
<tr>
<td>O6-Cd2-O3</td>
<td>81.26(5)</td>
<td>O12-Cd3-O11</td>
<td>138.34(4)</td>
</tr>
<tr>
<td>O6-Cd2-O4</td>
<td>135.41(5)</td>
<td>O12-Cd3-O7</td>
<td>94.09(6)</td>
</tr>
<tr>
<td>O6-Cd2-O4#3</td>
<td>135.41(5)</td>
<td>O12-Cd3-O7#1</td>
<td>94.09(6)</td>
</tr>
<tr>
<td>O6-Cd2-O5#3</td>
<td>93.12(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#1 x,-y,1/2-z; #2 x,-y,1/2+z; #3 1-x,1+y,3/2-z

### Compound 3

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd1 N1#1</td>
<td>2.3209(18)</td>
</tr>
<tr>
<td>Cd1-N1</td>
<td>2.3210(18)</td>
</tr>
<tr>
<td>Cd1-O1</td>
<td>2.2796(17)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>N11-Cd1-N1</td>
<td>81.44(10)</td>
</tr>
<tr>
<td>N11-Cd1-O2#1</td>
<td>89.27(7)</td>
</tr>
</tbody>
</table>

#1 1-x,1+y,1/2-z
Table S3. Hydrogen bonds of for 1-3 (Å and °)

<table>
<thead>
<tr>
<th>Compound 1</th>
<th>D-H····A</th>
<th>d(D-H)</th>
<th>d(H····A)</th>
<th>d(D····A)</th>
<th>&lt;(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15-H15····O4#1</td>
<td>0.93</td>
<td>2.36</td>
<td>3.026(5)</td>
<td>128.8</td>
<td></td>
</tr>
<tr>
<td>C19-H19····O1</td>
<td>0.93</td>
<td>2.47</td>
<td>3.098(4)</td>
<td>124.7</td>
<td></td>
</tr>
<tr>
<td>C20-H20A····O3</td>
<td>0.97</td>
<td>2.32</td>
<td>3.259(5)</td>
<td>162.2</td>
<td></td>
</tr>
<tr>
<td>C35-H35A····O2#2</td>
<td>0.97</td>
<td>2.60</td>
<td>3.479(4)</td>
<td>151.4</td>
<td></td>
</tr>
<tr>
<td>C35-H35B····O5#3</td>
<td>0.97</td>
<td>2.65</td>
<td>3.383(5)</td>
<td>133.0</td>
<td></td>
</tr>
<tr>
<td>C39-H39····O1#4</td>
<td>0.93</td>
<td>2.54</td>
<td>3.187(5)</td>
<td>127.2</td>
<td></td>
</tr>
<tr>
<td>#1 1-x,1/2+y,3/2-z; #2 2-x,-1/2+y,3/2-z; #3 2-x,-y,1-z; #4 1+x,-1+y,+z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound 2</th>
<th>D-H····A</th>
<th>d(D-H)</th>
<th>d(H····A)</th>
<th>d(D····A)</th>
<th>&lt;(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O7-H7A····O9#1</td>
<td>0.85</td>
<td>2.01</td>
<td>144.6</td>
<td>2.750(2)</td>
<td></td>
</tr>
<tr>
<td>O7-H7B····O2#1</td>
<td>0.85</td>
<td>2.09</td>
<td>143.1</td>
<td>2.818(3)</td>
<td></td>
</tr>
<tr>
<td>O6-H6B····O11#2</td>
<td>0.86</td>
<td>1.95</td>
<td>157.9</td>
<td>2.765(3)</td>
<td></td>
</tr>
<tr>
<td>O6-H6A····O11#3</td>
<td>0.86</td>
<td>1.95</td>
<td>158.6</td>
<td>2.765(3)</td>
<td></td>
</tr>
<tr>
<td>O5-H5A····O19#4</td>
<td>0.81</td>
<td>1.88</td>
<td>175.5</td>
<td>2.691(5)</td>
<td></td>
</tr>
<tr>
<td>O12-H12B····O4#5</td>
<td>0.85</td>
<td>1.93</td>
<td>154.0</td>
<td>2.716(3)</td>
<td></td>
</tr>
<tr>
<td>O12-H12A····O4#2</td>
<td>0.84</td>
<td>1.96</td>
<td>148.2</td>
<td>2.716(3)</td>
<td></td>
</tr>
<tr>
<td>#1 1/2-x,1/2+y,1/2-z; #2 1/2-x,1/2+y,1/2-z; #3 1/2-x,1/2+y,1+z; #4 1/2-x,1/2-y,1-z; #5 1/2+x,-1/2+y, -1+z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound 3</th>
<th>D-H····A</th>
<th>d(D-H)</th>
<th>d(H····A)</th>
<th>d(D····A)</th>
<th>&lt;(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-H1····O3#1</td>
<td>0.93</td>
<td>2.51</td>
<td>3.176(3)</td>
<td>128.3</td>
<td></td>
</tr>
<tr>
<td>#1 1/2-x,1/2+y,1/2-z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>