Supporting Information

Constructing Fe₂O₃ Nanoparticles in Nitrogen-Doped Carbon Materials to Enhance the Electrochemical Sensing Performance of Pb²⁺ and Cd²⁺

Shiya Wu^a, Renliang Lyu^a (Co-first author), Wei Xiong^{a,*}, Xiujing Xing^b, and Hao Li^{c,*}

^a Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

^b Chemistry Department, University of California, Davis 95616 United States

^c Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

^{*}Corresponding author

E-mail address: xiongwei@wit.edu.cn (W. X.); li.hao.b8@tohoku.ac.jp (H. L.)

Tel/Fax: +86-27-87195001; +81-080-9363-8256

Fig. S1 High resolution (a) C 1s and (b) N 1s XPS spectrum of Fe₂O₃@NCNPs-x.

Fig. S2 (a) the N_2 adsorption/desorption isotherm and (b) the pore-size distribution of Fe₂O₃@NCNPs-1.5 nanomaterial.

Fig. S3 Investigation of ptimal experimental conditions: the influence of (a) supporting electrolytes, (b) modified volume, (c) pH values, (d) deposition potential, and (e) deposition time on the current response of the $Fe_2O_3@NCNPs-1.5/GCE$. The error bars represented the standard deviations of triple measurements.

C-C				
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	284.8	0.9	45.5	
Fe ₂ O ₃ @NCNPs-1.0	284.8	0.9	45.5	
Fe ₂ O ₃ @NCNPs-1.5	284.8	0.9	43.5	
Fe ₂ O ₃ @NCNPs-2.0	284.8	0.9	48.1	
	C-N			
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	285.6	2.4	31.8	
Fe ₂ O ₃ @NCNPs-1.0	285.6	2.3	29.5	
Fe ₂ O ₃ @NCNPs-1.5	285.8	2.4	34.8	
Fe ₂ O ₃ @NCNPs-2.0	285.7	2.4	28.8	
π - π * satellite				
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	289.2	5.5	22.7	
Fe ₂ O ₃ @NCNPs-1.0	289.1	5.4	25.0	
Fe ₂ O ₃ @NCNPs-1.5	289.2	5.5	21.7	
Fe ₂ O ₃ @NCNPs-2.0	289.2	5.5	23.1	

 Table S1 The curve fitting information of C 1s for Fe₂O₃@NCNPs-n.

	N-6			
Sample	Binding Energy	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	398.4	1.9	22.5	
Fe ₂ O ₃ @NCNPs-1.0	398.6	1.7	18.9	
Fe ₂ O ₃ @NCNPs-1.5	398.4	1.6	22.2	
Fe ₂ O ₃ @NCNPs-2.0	398.4	1.9	20.7	
	N-5			
Sample	Binding Energy	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	400.4	1.9	40.0	
Fe ₂ O ₃ @NCNPs-1.0	400.1	1.7	37.7	
Fe ₂ O ₃ @NCNPs-1.5	400.4	1.6	44.4	
Fe ₂ O ₃ @NCNPs-2.0	400.2	1.9	31.0	
N-Q				
Sample	Binding Energy	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	401.5	1.9	25.0	
Fe ₂ O ₃ @NCNPs-1.0	401.3	1.7	35.9	
Fe ₂ O ₃ @NCNPs-1.5	401.5	1.6	27.8	
Fe ₂ O ₃ @NCNPs-2.0	401.4	1.9	34.5	
	N-X			
Sample	Binding Energy	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	403.0	1.9	12.5	
Fe ₂ O ₃ @NCNPs-1.0	402.8	1.7	7.5	
Fe ₂ O ₃ @NCNPs-1.5	402.8	1.6	5.6	
Fe ₂ O ₃ @NCNPs-2.0	403.0	1.9	13.8	

Table S2 The curve fitting information of N 1s for Fe₂O₃@NCNPs-n.

	Fe-O			
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	530.5	1.3	34.2	
Fe ₂ O ₃ @NCNPs-1.0	530.6	1.3	31.3	
Fe ₂ O ₃ @NCNPs-1.5	530.3	1.5	33.3	
Fe ₂ O ₃ @NCNPs-2.0	530.6	1.4	33.3	
	OVs			
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	531.9	1.6	37.5	
Fe ₂ O ₃ @NCNPs-1.0	531.8	1.7	34.4	
Fe ₂ O ₃ @NCNPs-1.5	532.2	1.8	41.7	
Fe ₂ O ₃ @NCNPs-2.0	531.9	1.7	30.0	
O ₂				
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	533.1	1.3	19.8	
Fe ₂ O ₃ @NCNPs-1.0	533.0	1.3	25.0	
Fe ₂ O ₃ @NCNPs-1.5	533.0	1.5	20.8	
Fe ₂ O ₃ @NCNPs-2.0	533.0	1.4	26.7	
	Н-О-Н			
Sample	Binding Energy (eV)	FWHM	%Area	
Fe ₂ O ₃ @NCNPs-0.5	534.4	1.4	8.5	
Fe ₂ O ₃ @NCNPs-1.0	534.4	1.4	9.3	
Fe ₂ O ₃ @NCNPs-1.5	534.8	1.5	4.2	
Fe ₂ O ₃ @NCNPs-2.0	534.3	1.4	10.0	

Table S3 The curve fitting information of **O 1s** for Fe₂O₃@NCNPs-n.

	Fe 2 <i>p</i> 3/2-Fe ²⁺		
Sample	Binding Energy	FWHM	%Area
Fe ₂ O ₃ @NCNPs-0.5	710.6	1.5	22.1
Fe ₂ O ₃ @NCNPs-1.0	710.5	1.5	19.2
Fe ₂ O ₃ @NCNPs-1.5	710.4	1.5	21.7
Fe ₂ O ₃ @NCNPs-2.0	710.5	1.6	14.3
	Fe 2 <i>p</i> 3/2-Fe ³⁺		
Sample	Binding Energy	FWHM	%Area
Fe ₂ O ₃ @NCNPs-0.5	712.6	1.7	26.5
Fe ₂ O ₃ @NCNPs-1.0	712.4	1.7	28.9
Fe ₂ O ₃ @NCNPs-1.5	712.4	1.7	18.1
Fe ₂ O ₃ @NCNPs-2.0	712.1	1.8	32.9
	Fe 2 <i>p</i> 1/2-Fe ²⁺		
Sample	Binding Energy	FWHM	%Area
Fe ₂ O ₃ @NCNPs-0.5	724.1	1.7	16.2
Fe ₂ O ₃ @NCNPs-1.0	723.9	1.7	11.5
Fe ₂ O ₃ @NCNPs-1.5	724.2	1.7	13.3
Fe ₂ O ₃ @NCNPs-2.0	723.9	1.8	9.6
	Fe 2 <i>p</i> 1/2-Fe ³⁺		
Sample	Binding Energy	FWHM	%Area
Fe ₂ O ₃ @NCNPs-0.5	727.0	1.9	12.9
Fe ₂ O ₃ @NCNPs-1.0	726.9	1.8	16.6
Fe ₂ O ₃ @NCNPs-1.5	726.8	1.8	10.2
Fe ₂ O ₃ @NCNPs-2.0	726.9	1.8	18.3

Table S4 The curve fitting information of Fe 2*p* for Fe₂O₃@NCNPs-n.

Fe ₂ O ₃ @NCNPs-1.5			
$S_{BET}^{a}(m^{2}/g)$	292		
$S_{micro} {}^{b} (m^2/g)$	30		
V_{total} c (cm ³ /g)	0.505		
$V_{micro} d (cm^3/g)$	0.014		
P ^e (nm)	6.92		

Table S5 The pore structure parameters of Fe₂O₃@NCNPs-1.5 nanomaterial.

a. The surface area (S_{BET}) calculated by the Brunauer-Emmett-Teller (BET) method. **b** and **d**. The surface area (S_{micro}) and volume (V_{micro}) of micropore calculated by the t-plot equation.

c. The total pore volume calculated by the N_2 adsorption/desorption isotherm at $P/P_0=0.95$.

e. The main pore size.

Analyt	æ	LOD (nM)	LOQ (nM)
Individual	Pb^{2+}	27.45	94.47
detection	Cd^{2+}	38.20	118.88
Simultaneous	Pb^{2+}	4.92	15.15
detection	Cd^{2+}	18.79	61.75

Table S6 The LOD and LOQ value of individual detection and simultaneous detectionof Pb^{2+} and Cd^{2+} on Fe_2O_3 @NCNPs-1.5/GCE.

Table S7 Comparison of the electrochemical performance of individual detection and simultaneous detection of Pb^{2+} and Cd^{2+} on Fe₂O₃@NCNPs-1.5/GCE and Fe₂O₃ NPs/GCE at the same testing conditions.

		Analyte	Fe ₂ O ₃ NPs/GCE	Fe ₂ O ₃ @NCNPs-1.5/GCE
Simultaneous	LOD	Pb^{2+}	10.99	4.92
determination	(nM)	Cd^{2+}	41.09	18.79
Individual	LOD	Pb^{2+}	9.48	27.45
determination	(nM)	Cd^{2+}	38.31	38.20