Supplementary Information

LLTO-containing heterogeneous composite electrolyte with a stable

interface enabling solid-state lithium metal batteries

Jiaying Bi*, a, b, Ling Zhang^{b,c}, Borong Wu*, b,c,d, Meixia Xiao^a, Lei Wang^a, Zhao Li^a

^a College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China.

^b Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

^c Chongqing Innovation Center of Beijing Institute of Technology, Chongqing 401120, China.

^d Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials, Beijing Institute of Technology, Beijing 100081, China.

* Corresponding authors.

E-mail addresses: jybi@xsyu.edu.cn (J.Y. Bi); wubr@bit.edu.cn (B.R. Wu).

Fig. S1. (a) EIS for the PLT electrolytes with different LLTO contents at room temperature. (b) Ionic conductivities of PLT electrolytes with different LLTO contents.

Fig. S2. The chronoamperometry curves of the (a) Li|PEO|Li and (b) Li|PVDF-HFP|Li cells under a polarization voltage of 10 mV (Insets are the EIS before and after the polarization).

Fig. S3. (a) EIS for the PLTP from 20 to 80 $^{\circ}$ C. (b) Arrhenius plot of the PLTP.

Fig. S4. CV curves of the Li|PLT|ss cell from -0.5 to 2.5 V at 60 $^\circ\text{C}.$

Fig. S5. CCD test of the lithium metal symmetrical cell with PLT measured from 0.1 to 2.4 mA cm^{-2} at 60 °C.