Supporting Information

Novel nitrogen-rich Lanthanum nitrides induced by the ligand effect

under pressure

Bo Jin^a, Yuanyuan Liu^a, Zhen Yao^{*a}, Shuang Liu^{*a} and Peng Wang^{*a}

^aState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. of China

Figure S1. The enthalpy of (a) *fcc*, *bcc*, and *dhcp* phases of La, and (b) α , *P*4₁2₁2₁, *cg*-N, *Pba*2, and $I\overline{4}3m$ -N₁₀ phases of N.

Figure S2. Crystal structures of predicted La-N compounds: (a) P63mc – LaN phase at 20GPa. (b) C2/c-^{LaN₂} phase at 100GPa. (c) $P\overline{1}$ (I)-^{LaN₄} phase at 20GPa. (d) $P\overline{1}$ (II)-^{LaN₄} phase at 50GPa. The large spheres are lanthanum atoms, and the small ones are nitrogen atoms.

Figure S3. The enthalpy differences of (a) P63mc phase and $P4/nm^m$ phase relative to $Fm^{3}m$ LaN. (b) C2/c-LaN₂ relative to P4/nmm-LaN and C2/c-LaN₃, (c) C2/c-LaN₃

relative to C2/c-LaN₂ and $P^{\bar{1}}(II)$ -LaN₄, (d) $P^{\bar{1}}(I)$ phase and $P^{\bar{1}}(II)$ phase LaN₄ relative to C2/c-LaN₂ and nitrogen, (e) $P^{\bar{1}}(II)$ -LaN₄ relative to C2/c-LaN₃ and $P^{\bar{1}}$ -LaN₈, (f) $P^{\bar{1}}$ -LaN₆ relative to C2/c-LaN₃ and $P^{\bar{1}}$ -LaN₈, (g) $P^{\bar{1}}$ -LaN₈ relative to $P^{\bar{1}}(II)$ -LaN₄ and nitrogen, (h) $P^{\bar{1}}$ -LaN₈ relative to $P^{\bar{1}}$ -LaN₆ and nitrogen.

Figure S4. The enthalpy differences of (a) $Pm^{\overline{3}m - \text{LaN}_6}$ and (b) $Imm2\text{-}^{\text{LaN}_{10}}$ relative to pure La and pure N.

Figure S5. Phonon dispersion curves of nine predicted phases: (a) $P63mc^{-}$ LaN phase at 20GPa. (b) $C2/c^{-LaN_2}$ phase at 0GPa. (c) $C2/c^{-LaN_3}$ phase at 100GPa. (d) $P^{\overline{1}}(I)^{-LaN_4}$ phase at 20GPa. (e) $P^{\overline{1}}(II)^{-LaN_4}$ phase at 50GPa. (f) $Pm^{\overline{3}m^{-}LaN_6}$ phase at 20GPa. (g) $P^{\overline{1}}_{-}LaN_6$ phase at 300GPa. (h) $P^{\overline{1}}_{-}LaN_8$ phase at 100GPa. (i) *Imm2*-LaN₁₀ phase at 300GPa.

Figure S6. Phonon dispersion curves for (a) $C2/c^{-LaN_3}$ phase at 0GPa. (b) Pm $\overline{3}m - LaN_6$ phase at 0GPa. (c) $P\overline{1}_{-}LaN_8$ phase at 0GPa. (d) $Imm2_{-}LaN_{10}$ phase at 25GPa.

Figure S7. ELF of (a) P63mc – LaN phase at 20GPa. (b) C2/c-^{LaN₂} phase at 0GPa. (c) C2/c-LaN₃ at 100 GPa, (d) $P\overline{1}(I)$ -^{LaN₄} phase at 20GPa. (e) and (f) $P\overline{1}(II)$ -^{LaN₄} phase at 50GPa, (g) $P\overline{1}$ – LaN₆ at 300 GPa, (h) $Pm\overline{3}m$ -LaN₆ at 20 GPa, (i) $P\overline{1}$ -LaN₈ at 100 GPa, (j) and (k) Imm2-LaN₁₀ at 300 GPa.

Phases	Pressure	Lattice	Wyckoff Positions			
1 hases	1 i cosui c	Paramatars	ors Atoms v		N Z	
		(Å)	Atoms	А	y	L
P63mc - LaN	20GPa	a = 35294	La1(2d)	0 3333	0.6667	0.7500
105mc Laiv	2001 a	b = 3.5294	N1(2a)	0.0000	0.0007	0.7500
		c = 6.2466	11(2a)	0.0000	0.0000	0.5000
		$\alpha = 90$				
		$\beta = 90$				
		p = 50 y = 120				
	1.atm	$\gamma = 6.8040$	I a1(/e)	0.5000	0 1003	0.2500
C2/c- ^{LaN₂}	Taum	h = 4.1854	N1(8f)	0.5000	0.1775	0.2500
		c = 6.7624		0.0707	0.5075	0.9175
		a = 90				
		$\beta = 104 \ 1053$				
		v = 90				
C2/c-LaN ₃	100GPa	a = 4.9259	La1(4e)	0.0000	0 3460	0.2500
	100010	b = 5.5858	N1(4e)	0.5000	0.2963	0.2500
		c = 5.0342	N2(8f)	0.3843	0.4524	0.0453
		$\alpha = 90$				
		$\beta = 99.2436$				
		$\gamma = 90$				
P1(I)-LaN4	20GPa	a = 3.9262	La1(2i)	0.7140	0.2977	0.2238
		b = 4.3309	N1(2i)	0.1231	0.7214	0.1297
		c = 7.1668	N2(2i)	0.6613	0.7155	0.5475
		$\alpha = 94.8466$	N3(2i)	0.1805	0.2293	0.9675
		$\beta = 103.9189$	N4(2i)	0.2295	0.1809	0.5701
		$\gamma = 78.3645$				
- LaN	50GPa	a = 3.7431	La1(2i)	0.4489	0.9837	0.2293
$P^{1}(\Pi)^{-\Sigma_{m}^{*}}$		b = 4.0440	N1(2i)	0.0921	0.6186	0.0280
		c = 6.9085	N2(2i)	0.6432	0.3624	0.5387
		$\alpha = 102.4135$	N3(2i)	0.2263	0.6923	0.8836
		$\beta = 96.3620$	N4(2i)	0.0019	0.6371	0.4615

Table S1. Structural parameters of predicted La-N compounds.

		$\gamma = 65.7927$				
\overline{n} – LaN	300GPa	a = 2.9699	La1(1g)	0.0000	0.5000	0.5000
P		b = 3.2655	N1(2i)	0.6277	0.9759	0.2349
		c = 4.4789	N2(2i)	0.6284	0.2886	0.8078
		$\alpha = 111.1590$	N3(2i)	0.9828	0.8229	0.0393
		$\beta = 96.1780$				
		$\gamma = 72.9577$				
Pm	20GPa	a = 5.1815	La1(1a)	0.0000	0.0000	0.0000
- 3m – LaN		b = 5.1815	La2(1b)	0.5000	0.5000	0.5000
$5m - Lain_6$		c = 5.1815	N1(12j)	0.5000	0.1322	0.1322
		$\alpha = 90$				
		$\beta = 90$				
		$\gamma = 90$				
51 LaNa	100GPa	a = 4.7182	La1(2i)	0.2211	0.0968	0.7848
P^{1} -Lar 8		b = 5.6176	N1(2i)	0.2583	0.4208	0.4484
		c = 5.6641	N2(2i)	0.3330	0.7285	0.0938
		$\alpha = 119.6460$	N3(2i)	0.2407	0.6304	0.6923
		$\beta = 89.3950$	N4(2i)	0.2449	0.1740	0.4114
		$\gamma = 76.2834$	N5(2i)	0.2536	0.4601	0.2425
			N6(2i)	0.2223	0.5569	0.8756
			N7(2i)	0.2534	0.9995	0.1416
			N8(2i)	0.2691	0.7193	0.3216
Imm2- ^{LaN} 10	300GPa	a = 4.3632	La1(2b)	0.0000	0.5000	0.3812
		b = 5.6826	N1(2a)	0.0000	0.0000	0.8765
		c = 4.2244	N2(2a)	0.0000	0.0000	0.1676
		$\alpha = 90$	N3(4c)	0.7463	0.5000	0.8374
		$\beta = 90$	N4(4d)	0.0000	0.8193	0.6888
		$\gamma = 90$	N5(8e)	0.2474	0.1851	0.5160

Structure (Pressure)	<i>P</i> 63 <i>mc</i> ⁻ LaN (20G)	C2/c- ^{LaN} ₂	$P^{\overline{1}}(I)$ -LaN ₄	$P^{\overline{1}}(II)$ - ^{LaN} ₄
		(0G)	(20G)	(50G)
Lost electrons of La	1.84	1.93	2.06	2.03

C2/c-LaN3	$P^{\overline{1}}$ - LaN ₆	$Pm^{\overline{3}m}$ - LaN ₆	P1_LaN ₈	Imm2-LaN ₁₀
(100G)	(300G)	(20G)	(50G)	(300G)
1.95	1.89	2.10	2.04	1.89