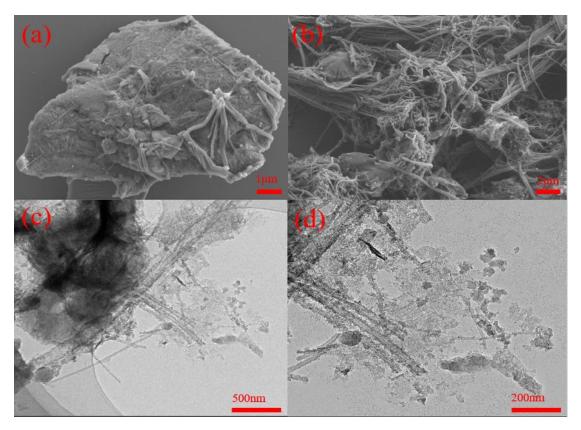
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

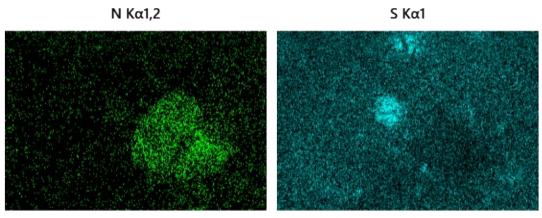
Electronic supplementary information (ESI)

A novel molecular expanded covalent triazine framework

heterojunctions with significantly enhanced molecular oxygen


activation and photocatalysis performance under visible light

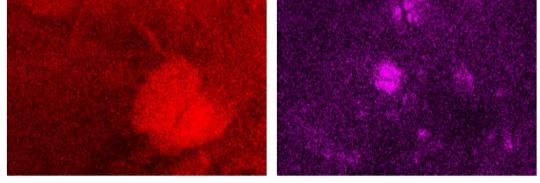
Yuxuan Shao,^a Dan You,^a Yuqi Wan,^{a,b*} Qingrong Cheng,^{a*} and Zhiquan Pan^a ^a School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.


^b The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, PR China.

Corresponding authors:

*(Q.C.) E-mail: chengqr383121@sina.com

Fig.S1 (a) SEM image of CTF-1 (b) SEM image of CTF-1-G (c) and (d) TEM image of CTF-1-G in size of 200 nm and 500 nm, respectively.



2.5µm

2.5µm

2.5µm

<u>-</u> ¢					Element	- Weig	ght%⊖	Wt% Sigma	Ato	mic%	€7
					Carbon	87.	25€	0.34↩	9	4.53⇔	
Ξ.					Nitrogen	₽ 4.1	24↩	0.37↩	3	94⊖	
100-					Sulphur	2.	78↩	0.02↩□	1	.13⇔	
-					Tungsten	← 5.	73↩	0.05↩	(9.41€	
					Total⇔	100	⊡00.	¢7	10	0.00€	
ops/eV 0	ws 	4	1 *	w w	W M • I • I] 12	' ' 14	1 ' ' I 16	' 18	. 1.1	' I keV

Fig.S2 N, S, C and W STEM EDX mapping of C-GW $_{15.}$

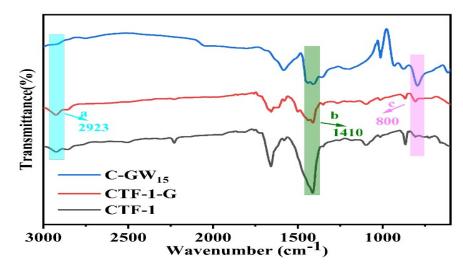


Fig.S3 IR spectra of CTF-1, C-F-1-G and heterojunction C-GW₁₅

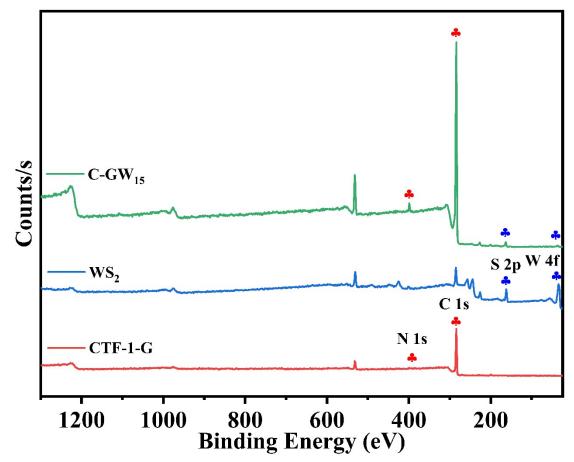


Fig.S4 XPS spectra of CTF-1-G, WS_2 and C-GW₁₅.

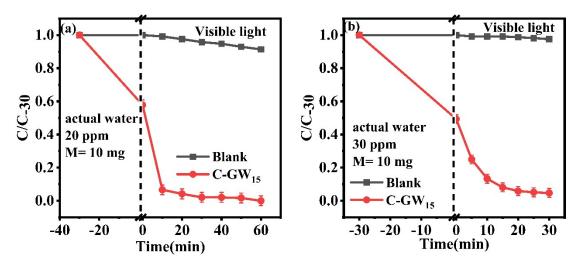


Fig. S5 (a) Photocatalytic degradation curves of TC over C-GW₁₅; (b) Photocatalytic degradation curves of RHB over C-GW₁₅.

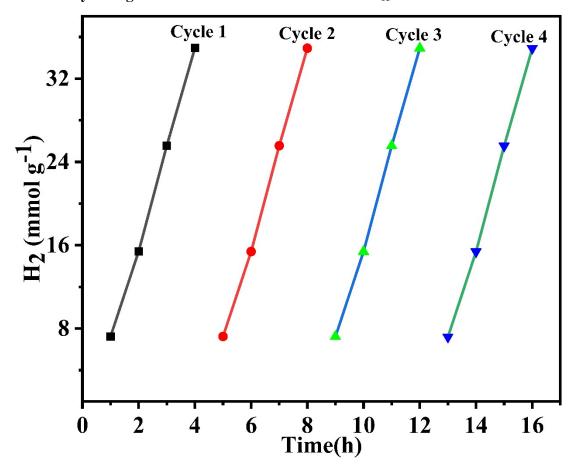
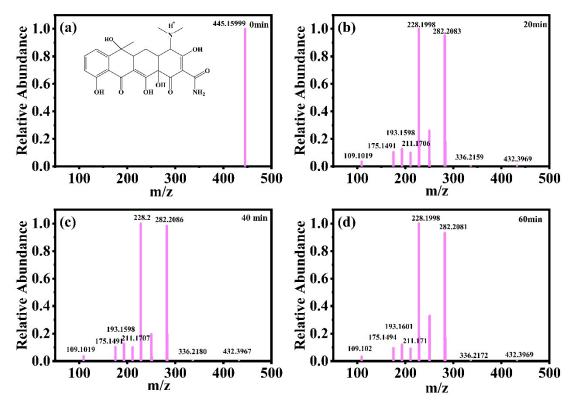



Fig. S6 H_2 produced by C-GW₁₅ for 4 consecutive cycles in every 4h time interval.

Fig.S7 Variations in the relative intensity of intermediate products of TC with different reaction time, as obtained in the LC-MS spectra.

Table.S1 Comparison of WS ₂ Based heterojunction for Photocatalytic RhB
Degradation.

Degradation.								
Catalyst / mg	V (mL) / C ₋₃₀ (mg·L ⁻¹)	Light source	Time (min)	Result (%)	TOF	Ref		
CTF-1-G/WS ₂ /10	50/30	Visible light	35	98%	4.2	This work		
WS2Q.Dots/ BiOCl/20	100/20	Visible light	20	80.1%	4.005	[1]		
$WS_2/AgI/50$	150/10	Visible light	30	91.2%	0.912	[2]		

Table S2 Comparison of the photocatalytic H_2 evolution rates over different

photocatalysts.

Photocatalysts	Irrigation	Sacrificial	Activity	Ref
Fnotocatatysis	Irrigation	agents	µmol·g ⁻¹ h ⁻¹	кеј

CTF-1-G/WS ₂	Visible light	Na_2SO_3 and Na_2S	8735.65	This work
WS_2/g - C_3N_4	Sun light	TEOA	154	[3]
$WS_2/ZnIn_2S_4$	Visible light	Na ₂ SO ₃ and Na ₂ S	199.1	[4]
Eh-WS ₂	Sunlight	Lactic acid	113.56	[5]
FL-WS ₂ /CdLa ₂ S ₄	Visible light	Na_2S and Na_2SO_3	3330	[6]

Reference

[1] P. Xiao, J. Lou, H. Zhang, W. Song, X.-L. Wu, H. Lin, J. Chen, S. Liu, X. Wang, Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight, Catalysis Science & Technology, 8 (2018) 201-209.

[2] X.F. Wu, H. Li, Y. Zhang, J.R. Zhang, J.Z. Su, Y.M. Feng, W.G. Zhang, L.S. Sun, X.G. Sun, Synthesis of AgI/WS2 hybrids as a novel photocatalyst with efficient degradation of rhodamine B, Micro & Nano Letters, 14 (2019) 173-177.

[3] Y. Zhou, X. Ye, D. Lin, One-pot synthesis of non-noble metal WS2/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen production, International Journal of Hydrogen Energy, 44 (2019) 14927-14937.

[4] J. Zhou, D. Chen, L. Bai, L. Qin, X. Sun, Y. Huang, Decoration of WS2 as an effective noblemetal free cocatalyst on ZnIn2S4 for enhanced visible light photocatalytic hydrogen evolution, International Journal of Hydrogen Energy, 43 (2018) 18261-18269.

[5] G. Koyyada, S.V. Prabhakar Vattikuti, S. Shome, J. Shim, V. Chitturi, J.H. Jung, Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets, Materials Research Bulletin, 109 (2019) 246-254.

[6] X. Liu, X. Chen, S. Wang, L. Yan, J. Yan, H. Guo, F. Yang, J. Lin, Promoting the photocatalytic H2 evolution activity of CdLa2S4 nanocrystalline using few-layered WS2 nanosheet as a co-catalyst, International Journal of Hydrogen Energy, 47 (2022) 2327-2337.