SUPPLEMENTARY MATERIAL

Homo- and heterometallic complexes of Zn(II), {Zn(II)Au(I)}, and {Zn(II)Ag(I)} with pentadentate Schiff base ligands as promising anticancer agents

Tania Zhivkova,[†]^a Daniela C. Culita,[†]^b Abedulkadir Abudalleh,^a Lora Dyakova,^c Teodora Mocanu,^b Augustin M. Madalan,^d Milena Georgieva,^e George Miloshev,^e Anamaria Hanganu,^{d,f} Gabriela Marinescu,^{*}^b Radostina Alexandrova^{*}^a

 ^aInstitute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria
^bIlie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania
^cInstitute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 23, Sofia 1113, Bulgaria
^dFaculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
^eInstitute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
^f"C.D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, Splaiul Independentei 202B, Bucharest, Romania

⁺ Both authors contributed equally to the manuscript.

*Corresponding authors: <u>gmarinescu@icf.ro</u> (Gabriela Marinescu); <u>rialexandrova@hotmail.com (</u>Radostina Alexandrova)

Figure S1. Detail of the crystal packing diagram in compound **ZndmenAu** (the two crystallographic independent heptanuclear units are colored in grey and green).

Figure S2. ¹H NMR (DMSO-d6) spectra of ZndmenAu at t0, 24, 48, and 72h.

Figure S3. ¹H NMR (DMSO-d6) spectra of ZndmenAg at t0, 24, 48, and 72h.

Figure S4. ¹H NMR (DMSO-d6) spectra of ZnampyAu at t0, 24, 48, and 72h.

Figure S5. ¹H NMR (DMSO-d6) spectra of **Znampy** at t0, 24, 48, and 72h.

Figure S6. Solid-state emission spectra of Zndmen, Znampy, Znaepy, ZndmenAg, and ZndmenAu at room temperature (λ_{exc} = 350 nm).

Figure S8. Concentration-response curves of investigated complexes for triple negative breast cancer MDA-MB-231 cells evaluated by MTT test after 24 h (A, B) and 48 h (C, D) treatment period.

Figure S9. Comparison between three different cytotoxicity assays (MTT, NR, and CV) after 72h of treatment with (0.1-20 μ g/ml) **ZndmenAu** on MCF-7 (A); **ZndmenAg** (10 - 100 μ g/ml) on MDA-MB-231 cells (B): representative curves.

ZndmenAg		ZndmenAu			
Bonds length (Å)					
Zn1-N1 = 2.108(3)	Zn2-O1 = 2.103(2)	Zn1-O1 = 2.090(3)	Zn4-O4 = 1.965(4)		
Zn1-N2 = 2.122(3)	Zn2-O2 = 1.944(3)	Zn1-O2 = 1.945(4)	Zn4-O3 = 2.092(4)		
Zn1-N3 = 2.017(3)	Ag1-C18 = 2.047(4)	Zn1-N5 = 2.049(6)	Zn4-N14 = 2.025(5)		
Zn1-O1 = 2.024(3)	Ag1-C18' = 2.047(4)	Zn1-N1 = 2.068(4)	Zn4-N11 = 2.178(4)		
Zn1-O2 = 1.997(2)	Ag2-C19 = 2.058(4)	Zn1-N2 = 2.154(4)	Zn4-N10 = 2.059(5)		
Zn2-N4 = 2.079(3)	Ag2-C19" = 2.058(4)	Zn2-O1 = 2.059(3)	Au1-C18 = 1.983(7)		
Zn2-N5 = 2.169(3)	N3-C18 = 1.125(5)	Zn2-O2 = 1.973(4)	Au1-C19 = 1.984(8)		
Zn2-N6 = 2.023(3)	N6-C19 = 1.120(5)	Zn2-N7 = 2.032(5)	Au2-C20' = 1.985(6)		
		Zn2-N4 = 2.124(5)	Au2-C20 = 1.985(6)		
		Zn2-N3 = 2.074(5)	Au3-C62 = 1.990(7)		
		Zn3-O4 = 1.952(4)	Au3-C73 = 1.985(7)		
		Zn3-O3 = 2.088(4)	Au4-C64 =1.996(6)		
		Zn3-N12 = 2.023(5)	Au4-C64' = 1.996(6)		
		Zn3-N8 = 2.067(6)	Au2-Au1' = 3.2496(9)		
		Zn3-N9 = 2.143(5)	Au2-Au1 = 3.2496(9)		
			Au4-Au3' = 3.2813(5		
			Au4-Au3 = 3.2814(6)		
Angles (°)					
O2-Zn1-O1 = 80.7(1)	O1-Zn2-N5 = 160.0(2)	O2-Zn1-O1 = 78.7(2)	O4-Zn3-O3 = 77.7(2)		
O2-Zn1-N1 = 151.1(2)	N4-Zn2-O1 = 82.1(1)	O2-Zn1-N1 = 146.1(2)	O4-Zn3-N8 = 145.6(2)		
O2-Zn1-N2 = 100.8(2)	N4-Zn2-N5 = 81.3(2)	O2-Zn1-N2 = 104.8(3)	O4-Zn3-N9 = 104.3(2)		
O2-Zn1-N3 = 104.2(2)	N6-Zn2-O1 = 95.5(2)	O2-Zn1-N5 = 109.2(3)	O4-Zn3-N12 = 114.2(2)		
O1-Zn1-N1 = 83.6(2)	N6-Zn2-N4 = 114.8(2)	O1-Zn1-N1 = 84.1(2)	O3-Zn3-N8 = 83.7(2)		
O1-Zn1-N2 = 148.6(1)	N6-Zn2-N5 = 101.4(1)	O1-Zn1-N2 = 159.0(2)	O3-Zn3-N9 = 156.2(2)		
N1-Zn1-N2 = 80.4(2)	Zn2-O2-Zn1 = 102.1(1)	N1-Zn1-N2 = 81.8(2)	N8-Zn3-N9 = 82.0(3)		
N3-Zn1-O1 = 107.1(2)	Zn1-O1-Zn2 = 95.9(1)	N5-Zn1-O1 = 95.7(2)	N12-Zn3-O3 = 99.3(3)		
N3-Zn1-N1 = 103.4(2)	N3-C18-Ag1 = 173.6(4)	N5-Zn1-N1 = 101.4(2)	N12-Zn3-N8 = 97.0(2)		
N3-Zn1-N2 = 102.7(3)	N6-C19-Ag2 = 178.2(5)	N5-Zn1-N2 = 102.3(2)	N12-Zn3-N9 = 101.1(2)		
O2-Zn2-O1 = 80.0(2)	C19-N6-Zn2 = 165.4(4)	O2-Zn2-O1 = 78.9(2)	O3-Zn4-O4 = 77.3(2)		
O2-Zn2-N4 = 141.8(2)	C18-N3-Zn1 = 161.4(4)	O2-Zn2-N3 = 153.5(2)	O3-Zn4-N10 = 83.6(3)		
O2-Zn2-N5 = 106.7(1)	C18'-Ag1-C18 = 180.0	O2-Zn2-N4 = 103.5(2)	O3-Zn4-N11 = 150.2(2)		
O2-Zn2-N6 = 100.3(1)	C19"-Ag2-C19 =180.0	O2-Zn2-N7 = 104.8(2)	O3-Zn4-N14 = 105.8(2)		
		O1-Zn2-N4 = 147.4(2)	O4-Zn4-N14 = 105.6(2)		
		N3-Zn2-O1 = 83.7(2)	N11-Zn4-O3 = 150.2(2)		
		N3-Zn2-N4 = 80.9(2)	N11-Zn4-N10 = 81.7(2)		
		N7-Zn2-O1 = 111.8(3)	N14-Zn4-O3 = 105.8(2)		
		N7-Zn2-N3 = 100.1(2)	N14-Zn4-N10 = 102.6(2)		
		N7-Zn2-N4 = 98.9(3)	N14-Zn4-N11 = 102.6(2)		
		Zn2-O2-Zn1 = 100.6(2)	Zn3-O4-Zn4 = 100.9(3)		
		Zn1-O1-Zn2 = 93.1(2)	Zn3-O3-Zn4 = 92.6(2)		
		N5-C18-Au1 = 179.2(6)	N12-C37-Au3 = 177.9(5)		
		N6-C19-Au1 = 178.9(8)	N13-C38-Au3 = 177.3(7)		
		N7-C20-Au2 = 175.0(5)	N14-C39-Au4 = 178.3(5)		
		C20-N7-Zn2 = 165.9(5)	C39-N14-Zn4 = 171.7(4)		
		C18-N5-Zn1 = 165.4(4)	C37-N12-Zn3 = 168.1(5)		
		C18-Au1-C19 = 177.4(2)	C37-Au3-C38 = 175.7(3)		
		C20'-Au2-C20 =177.0(3)	C39'-Au4-C39 =178.5(3)		
'= -x,1-y,1	1-z; "= 1-x,1-y,-z	′ = 1-2	к, y, 1/2-z		

Table S1. Selected geometric parameters: bonds (Å) and angles (°) in compounds ZndmenAg and ZndmenAu.

Cell line	MCF-7					
	M	тт	NR	CV		
	24 h	48 h	72 h	72 h		
Znampy	n.d.	n.d.	(-)	n.d.		
ZnampyAg	n.d.	n.d.	n.d.	n.d.		
ZnampyAu	30.5 ± 0.2 (n.d.)	2.7 ± 0.9 (11.5 ± 0.7)	3.6 ± 2.1 (6.1 ± 1.8)	5.3 ± 1.7		
Zndmen	n.d.	n.d.	(-)	n.d.		
ZndmenAg	36.8 ± 3.5 (63.8 ± 5.9)	30.7 ± 4.8 (62.3 ± 4.9)	n.d.	123.7 ± 5.6		
ZndmenAu	3.4 ± 1.5 (n.d.)	2.2 ± 1.8	2.1 ± 2.1 (n.d.)	2.3 ± 2.0		
Znaepy	n.d.	n.d.	(-)	n.d.		
ZnaepyAg	20.1 ± 4.4	20.4 ± 3.1	(-)	7.8 ± 1.0		

Table S2. Cytotoxic activity (CC₅₀ and CC₉₀, μ M) of the investigated complexes on cultured MCF-7 cells.

 CC_{50} and CC_{90} concentrations (in brackets); results are obtained by MTT test (MTT), NR uptake cytotoxicity assay (NR) and CV staining technique (CV) after 24, 48, and 72 h of treatment; n.d. (not determined) marked the cases in which CC_{50} and CC_{90} were not calculated because the viability of the cells is >50% and respectively >10%; (-) = no data.

Table S3. Cytotoxic activity (CC_{50} and CC_{90} , μM) of the investigated complexes on cultured MDA-MB-231 cells.

Cell line	MDA-MB-231				
	M	тт	NR	CV	
	24 h	48 h	72 h	72 h	
Znampy	n.d.	n.d.	(-)	256.6 ± 3.5	
ZnampyAg	n.d.	n.d.	n.d.	n.d.	
ZnampyAu	n.d.	n.d.	6.1 ± 2.2 (n.d.)	8.2 ±3 .7	
Zndmen	n.d.	n.d.	(-)	235 ± 2.7	
ZndmenAg	41.1 ± 3.2 (65.2 ± 1.7)	51.0 ± 5.9 (69.2 ± 4.9)	n.d.	112.4 ± 5.9	
ZndmenAu	7.8 ± 1.4	5.2 ± 1.5 (n.d.)	2.7 ± 1.7 (5.2 ± 1.6)	1.8 ± 1.9	
Znaepy	n.d.	n.d.	(-)	162.8 ± 7.1	
ZnaepyAg	14.8 ± 5.9 (21.3 ± 5.3)	15.3 ± 4.2	(-)	8.2 ± 5.6 (18.8 ± 4.2)	

 CC_{50} and CC_{90} concentrations (in brackets); results are obtained by MTT test (MTT), NR uptake cytotoxicity assay (NR) and CV staining technique (CV) after 24, 48, and 72 h of treatment; n.d. (not determined) marked the cases in which CC_{50} and CC_{90} were not calculated because the viability of the cells is >50% and respectively >10%; (-) = no data.

Cell line	HeLa					
	M	ІТТ	NR	CV		
	24 h	48 h	72 h	72 h		
7	157.0	98.7 ± 2.2	86.2 ± 2.6			
Znampy	157.9	(145.1 ± 5.2)	(137.3 ± 2.5)	112.0±3.0		
7	43.6 ± 0.3	16.0 ± 1.5	7.9 ± 0.8	9.8 ± 2.0		
глатруд	(121 ± 0.8)	(43.6 ± 1.8)	(22.3 ± 1.5)	(19.3 ± 2.6)		
	20 ± 0.0	0.6 ± 0.3	0.3 ± 1.3	1.0 ± 0.4		
znampyAu	3.0 ± 0.9	(0.9 ± 0.5)	(2.9 ± 1.4)	(2.4 ± 0.7)		
Zndmen	n.d.	n.d.	n.d.	n.d.		
	15.9 ± 1.7	13.2 ± 3.5	11.8 ± 3.0	12.3 ± 2.4		
ZnamenAg	(26.8 ± 1.8)	(25.4 ± 2.5)	(23.9 ± 3.9)	(25.5 ± 2.8)		
7ndmon Au	2.6 ± 1.6	0.7 ± 1.7	0.6 ± 1.4	1.2 ± 0.9		
ZndmenAu	(20.3 ± 2.3)	(2.7 ± 1.4)	(2.4 ± 1.3)	(8.2 ± 1.4)		
Znaepy	n.d.	n.d.	n.d.	n.d.		
ZnaepyAg	6.9 ± 0.8	4.2 ± 2.4	5.2 ± 3.7	7.2 ± 3.1		
	(18.8 + 1.4)	(8.2 + 2.9)	(10.1 + 3.2)	(10.8 + 3.5)		

Table S4. Cytotoxic activity (CC₅₀ and CC₉₀, μ M) of the investigated complexes on cultured HeLa cells.

ZnaepyAg (18.8 ± 1.4) (8.2 ± 2.9) (10.1 ± 3.2) (10.8 ± 3.5) CC50 and CC90 concentrations (in brackets); results are obtained by MTT test (MTT), NR uptake
cytotoxicity assay (NR) and CV staining technique (CV) after 24, 48, and 72h of treatment; n.d. (not
determined) marked the cases in which CC50 and CC90 were not calculated because the viability of the
cells is >50% and respectively >10%.

Table S5. Cytotoxic activity (CC₅₀ and CC₉₀, μ M) of the investigated complexes on cultured Lep-3 cells.

Cell line	Lep-3		
	NR	CV	
	72 h	72 h	
700000	45.0 ± 4.9	36.1 ± 5.4	
Zhampy	(66.5 ± 5.8)	(66.0 ± 3.9)	
ZnomnyAg	9.0 ± 1.7	9.0 ± 2.0	
глаттруде	(12.0 ± 1.3)	(12.0 ± 2.6)	
ZnomnyAu	0.4 ± 0.8	0.3 ± 1.8	
zпаптруAu	(0.5 ± 1.3)	(0.5 ± 1.3)	
Zndmon	23.4 ± 2.9	20.5 ± 4.6	
Zhumen	(62.1 ± 1.8)	(29.6 ± 3.9)	
ZndmonAg	8.3 ± 2.6	7.9 ± 0.7	
ZhumenAg	(12.7 ± 2.9)	(13.1 ± 3.2)	
ZndmonAu	0.9 ± 1.1	1.9 ± 0.8	
ZhumenAu	(2.7 ± 1.8)	(2.7 ± 0.9)	
70000	28.7 ± 3.7	20.9 ± 2.5	
znaepy	(61.5 ± 3.3)	(29.0 ± 2.0)	
7220224	3.3 ± 1.9	3.3 ± 3.0	
глаеруАg	(5.6 ± 2.4)	(5.6 ± 2.2)	

 CC_{50} and CC_{90} concentrations (in brackets); results are obtained by NR uptake cytotoxicity assay (NR) and CV staining technique (CV) after 72 h of treatment.

Cell line			Ci	isplatin		
	MTT	NR	MTT	NR	MTT	NR
	24	l h	48	3 h	72	2 h
MCE 7	۶d	n.d. n.d.	154.1	166.0	92.0	99.6
IVICF-7	n.a.		(n.d.)	(n.d.)	(n.d.)	(n.d.)
	n d	n.d. n.d.	54.3	82.6	51.6	60.0
WDA-WB-231	n.u.		(n.d.)	(n.d.)	(132.9)	(152.1)
U.J.	99.6	85.9	21.9	38.5	28.0	19.9
HeLa	(-)	(-)	(55.5)	(61.0)	(62.9)	(56.6)
Lon 2	n d	70.0	27.5	17.6	1.6	()
Lep-3	n.a.	70.0	(93.2)	(32.2)	(29.5)	(-)

Table S6. Cytotoxic activity (CC_{50} and CC_{90} , μ M) of cisplatin on viability and proliferation of treated tumor and non-tumor cells.

 CC_{50} and CC_{90} concentrations (in brackets) are obtained by MTT test (MTT) and NR uptake cytotoxicity assay (NR) after 24, 48, and 72 h of treatment; n.d. (not determined) marked the cases in which CC_{50} and CC_{90} were not calculated because the viability of the cells is >50% and respectively >10%; (-) = no data.

Table S7. Cytotoxic activity (CC_{50} and CC_{90} , μ M) of oxaliplatin and epirubicin on viability and proliferation of treated tumor and non-tumor cells.

Cell line		Oxaliplatin			Epirubicin		
	24 h	48 h	72 h	24 h	48 h	72 h	
MCF-7	n.d.	251.7 (n.d.)	111.3 (n.d.)	n.d.	52.4 (n.d.)	28.7 (n.d.)	
MDA-MB-231	n.d.	43.7 (226.6)	25.1 (238.4)	131.8 (n.d.)	16.9 (184.0)	16.0 (132.3)	
HeLa	170.0 (-)	38.9 (190.7)	15.4 (117.3)	113.3 (-)	35.6 (128.4)	31.9 (85.7)	
Lep-3	174.4 (n.d.)	76.8 (251.6)	2.4 (125.8)	n.d.	45.8 (n.d.)	1.4 (33.7)	

 CC_{50} and CC_{90} concentrations (in brackets) are obtained by MTT test (MTT) after 24, 48, and 72 h of treatment; n.d. (not determined) marked the cases in which CC_{50} and CC_{90} were not calculated because the viability of the cells is >50% and respectively >10%; (-) = no data.