Supplementary Information

Response to solvent stimulation of terbium-organic framework for photocatalysis CO₂ reduction

Xin Lu‡^a, Zhilong Yao‡^a, Xiaomin Yuan^a, Yao Wei^a, Zhihao Zhu*^a, Hegen Zheng*^b, Chuanlei Zhang*^{ab}

a. Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Engineering, Anqing Normal University, Anqing 246011, China.

b. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China

Complex	AQNU-4
Empirical formula	C ₃₉ H ₅₇ O ₂₀ Tb
Formula weight	1018.78
Crystal system	Triclinic
Space group	PError!
<i>a /</i> Å	9.4513(4) A
<i>b</i> / Å	15.2354(7)
<i>c</i> / Å	18.4015(8)
lpha / °	108.9470(10)
eta / $^{\circ}$	95.4730(10)
γ/ °	93.3720(10)
V / Å ³	2483.35(19)
Ζ	2
D_{calcd} / g cm ⁻³	1.072
μ / mm ⁻¹	1.465
<i>F</i> (000)	926
heta min-max / °	1.420, 28.392
Tot., uniq. data	18150, 12291
<i>R</i> (int)	0.0759
Nres, Npar	7, 436
$R_1, wR_2 [I > 2\sigma(I)]$	0.0426, 0.0843
R_1 , wR_2 [all data]	0.0565, 0.0868
GOF on F^2	1.064
Min. and max resd dens (e·Å-3)	-1.027, 1.731

Tab. S1 Crystal data and structural refinements parameters of AQNU-4.

Tab. S2 Selected Bond Lengths (Å) and Angles (deg) for AQNU-4.

AQNU-4				
O(8)-Tb(1)#1	2.337(3)	Tb(1)-O(1)	2.304(3)	
O(1W)-Tb(1)	2.574(3)	Tb(1)-O(2W)	2.516(3)	
Tb(1)-O(2)#1	2.380(3)	Tb(1)-O(7)	2.340(2)	
Tb(1)-O(4)#3	2.341(2)	Tb(1)-O(3)#2	2.321(3)	
O(1)-Tb(1)-O(8)#1	73.64(10)	O(1)-Tb(1)-O(3)#2	144.11(11)	
O(2W)-Tb(1)-O(1W)	126.18(10)	O(2)#1-Tb(1)-O(1W)	69.53(10)	

O(7)-Tb(1)-O(1W)	138.59(11)	O(4)#3-Tb(1)-O(1W)	69.09(11)
O(3)#2-Tb(1)-O(1W)	69.82(11)	O(8)#1-Tb(1)-O(1W)	70.83(11)
O(1)-Tb(1)-O(1W)	139.30(11)	O(2)#1-Tb(1)-O(2W)	138.42(10)
O(7)-Tb(1)-O(2W)	69.95(10)	O(4)#3-Tb(1)-O(2W)	73.15(10)
O(3)#2-Tb(1)-O(2W)	72.09(11)	O(8)#1-Tb(1)-O(2W)	138.41(11)
O(1)-Tb(1)-O(2W)	72.45(11)	O(7)-Tb(1)-O(2)#1	75.78(10)
O(4)#3-Tb(1)-O(2)#1	138.42(11)	O(3)#2-Tb(1)-O(2)#1	81.46(10)
O(8)#1-Tb(1)-O(2)#1	81.30(10)	O(1)-Tb(1)-O(2)#1	123.59(9)
O(4)#3-Tb(1)-O(7)	142.97(10)	O(3)#2-Tb(1)-O(7)	83.53(9)
O(8)#1-Tb(1)-O(7)	125.64(9)	O(1)-Tb(1)-O(7)	79.39(10)
O(3)#2-Tb(1)-O(4)#3	88.16(9)	O(8)#1-Tb(1)-O(4)#3	81.68(9)
O(1)-Tb(1)-O(4)#3	86.86(10)	O(8)#1-Tb(1)-O(3)#2	140.44(11)

Symmetry Codes for 1: #1 = -x + 2, -y + 1, -z + 2; #2 = x, y, z + 1; #3 = -x + 1, -y + 1, -z + 1; #4 = -x + 2, -y + 2, -z + 3; #5 = x, y, z - 1.

Fig. S1 ¹H NMR spectrum of DTDA.

Fig. S2 Powder X-ray diffraction patterns of AQNU-4.

Fig. S3 Thermogravimetric curves of AQNU-4 before and after activation.

Fig. S4 Infrared spectrum of ligand DTDA (a) and AQNU-4 (b).

Fig. S5 The fitted decay curve in the solid state at room temperature (monitored at 452 nm for DTDA ligand, (a, c); 425 nm for **AQNU-4**, (b, d)). The sample was excited at 343 nm. Scattered line: experimental data; Solid line: fitted by Fit = $A+B_1 \times exp(-t/\tau_1)+B_2 \times exp(-t/\tau_2)$.

Fig. S6 N_2 sorption isotherm of AQNU-4 at 77 K and the corresponding pore diameter distribution (inset) based on DFT model.

Fig. S7 Fluorescence excitation and emission spectra of AQNU-4 (the inset picture shows a real

Fig. S8 Survey XPS spectra of AQNU-4 before and after activation.

Fig. S9 The Tb 4d (a), O 1s (b) and C 1s (c) XPS spectrum before and after activation.

Fig. S10 The UV-Vis absorption spectra of DTDA (a) and AQNU-4 (b).

Fig. S11 PXRD of AQNU-4 post-photocatalysis in cyclohexanone.

Fig. S12 The DFT computational model of structure AQNU-4.

Fig. S13 Geometric configurations of AQNU-4 in the reaction path of photocatalysis CO₂ reduction.

Fig. S14 The mechanistic path for CO_2 reduction reaction.