Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials

Accelerating glucose electrolysis on Cu-doped MIL-88B for an energy efficient anodic reaction in water-splitting

Nabeen K. Shrestha^{*,a}, Supriya A. Patil^b, Amol S. Salunke^a, Akbar I. Inamdar^a, Hyunsik Im^{*,a} ^aDivision of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea. ^bDepartment Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul-05006, Republic of Korea.

Figure S1. SEM image of the cracked surface view of the Cu-doped@MIL-88B film on a nickel foam (a) showing film thickness of ca. 300 nm, and (b) the MOF particles are deposited just underneath the thin nano-porous top layer.

© ©			elements	<u>s at.%</u>	I		
			С	56,52			
			N	7.74			
			0	28.15			
			Fe	5.13		6	
¢ N)		Cu	2.46			
<u></u>	las state fille	1404-140	belistin da se				X
	1	2	3	4	5	6	7 keV

Figure S2. X-ray energy dispersive spectroscopy (EDS) spectrum and the atomic % of constitutional element of powder Cu-doped@MIL-88B.

Figure S3. cyclic voltammograms of the (a) NF, (b) MIL-88B/NF and (c) Cu-doped@MIL-88B/NF, electrodes measured at various scan speeds in 0.1 M glucose + 1.0 M KOH solution in a non-Faradic region. (d) Linear plots of average current density (Δj) as a function of scan speeds. The slopes of curves provide the double layer capacitance (C_{dl}).

Figure S4. ECSA normalized LSV polarization curves for GOR in 0.1 M glucose + 1.0 M KOH aqueous electrolyte solution.

Figure S5. Schematic diagram showing the electrolysis of glucose. At the Cu-doped@MIL-88B based anode, glucose oxidation involves the 2-electron transfer in the oxidation of -CHO to -COOH (C1-position) followed by 4-electron transfer in the oxidation of $-CH_2OH$ to -COOH (C6- position).^[*] At the cathode, reduction of water leads to the hydrogen evolution reaction.

^[*]W. J. Liu, Z. Xu, D. Zhao, X.-Qi. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin, G. W. Huber, H.-Q. Yu, Nat Commun. 2020, 11, 265.

Figure S6. Fe 2p XPS spectra of the Cu-doped@MIL-88B/NF electrode (a) before and (b) after, the long-term electrochemical durability test for 50 h at 10 mAcm⁻² in 1.0 M KOH +0.1 M glucose solution.

Catalysts	alysts Electrolyte		GOR potential	Ref.
		$(mA.cm^{-2})$	V vs RHE	
Cu-doped@MIL-88B/NF	0.1 M glucose +	10	1.35	This work
	1.0 M KOH	100	1.42	
		200	1.46	
		350	1.48	
MIL-88B/NF	0.1 M glucose +	10	1.39	This work
	1.0 M KOH	100	1.46	
		200	1.48	
Cu(OH)2	0.1 M glucose +	100	~ 1.49*	[1]
	1.0 M KOH			
Fe2P films	0.5 M glucose +	100	1.58	[2]
	1.0 M KOH			
NiFeOx-NF	0.1 M glucose +	100	~1.31*	[3]
NiFeNx-NF	1.0 M KOH	100	~1.36*	
Cu/CoNC	0.1 M glucose +	100	~1.42*	[4]
	1.0 M KOH			

Table S1. Comparison on glucose oxidation activity of various electrocatalysts.

*GOR potentials are estimated from the LSV polarization curves given in the corresponding works.

SI-References

[1] Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang, J. Tian, T. Wang, S. Zhao, J. Liu, L. Tao, S, Wang, *Adv. Mater.* 2021, **33**, 2104791.

[2] P. Du, J. Zhang, Y. Liu, M. Huang, Electrochem. Commun. 2017, 83, 11.

[3] W. J. Liu, Z. Xu, D. Zhao, X.-Qi. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin,

G. W. Huber, H.-Q. Yu, Nat Commun. 2020, 11, 265.

[4] Y. Xin, F. Wang, L. Chen, Y. Li, K. Shen, Green Chem. 2022, 24, 6544.