Probing the Effect of Nitro-substituents in the Modulation of LUMO Energies for Directional Electron Transport through 4d⁶ Ruthenium(II)-based Metallosurfactants

Samudra Amunugama,^a Eyram Asempa,^b Elena Jakubikova, *, ^b Cláudio N. Verani *, ^a

(a) Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.(b) Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA

Outline

Figure S1. ESI mass spectrum of complex 1-3 (a-c)

Figure S2. ¹H-NMR spectrum of 4'-(4-(octadecyloxy)phenyl)-2,2':6'2"-terpyridine (L^{terpy}) ligand

Figure S3. ¹H-NMR spectrum of 4'-(4-nitrophenyl)- 2,2':6',2"-terpyridine (tpy^{NO2})

Figure S4. COSY NMR spectrum of complex $[Ru(tpy^{OC18})(tpy)](PF_6)_2$ **1**

Figure S5. HSQC NMR spectrum of complex $[Ru(tpy^{OC18})(tpy)](PF_6)_2$ **1**

Figure S6. COSY NMR spectrum of complex $[Ru(tpy^{OC18})(phen)CI](PF_6)$ 3

Figure S7. HSQC NMR spectrum of complex [Ru(tpy^{OC18})(phen)Cl](PF₆) 3

Figure S8. HSQC NMR spectrum of complex [Ru(tpy^{OC18})(phen^{NO2})Cl](PF₆) 4

Figure S9. UV-visible spectrum of complexes 1-4 in 1×10^{-5} M dichloromethane solution

 Table T1. UV-visible data for complexes 1-4

Table T2. Redox potentials vs Fc/Fc⁺ for complexes 1-4

Figure S10. Isothermal compression data of complexes 1-4 (a-d)

Figure S11. BAM Images of Complexes 1, 2 and 3

Table T3. Transfer ratios of monolayers of complexes 1-4

Figure S12. Comparison of UV-vis spectrum of LB films and solution state UV-vis spectrum of 3

Figure S13. Comparison of UV-vis spectrum of LB films and solution state UV-vis spectrum of 4

Figure S14. Comparison between IR spectrum of complex **4** in KBr and IRRAS spectrum of 47-layer LB film.

Figure S15. Comparison between IR spectrum of complex **3** in KBr and IRRAS spectrum of 47-layer LB film.

Figure S16. Mass spectrum of [Ru(tpy^{OC18})(phen)Cl](PF₆) **3** recovered from LB films

Figure S17. Mass spectrum of $[Ru(tpy^{OC18})(phen^{NO2})CI](PF_6)$ 4 recovered from LB films

Figure S18. AFM images of complex 4 deposited at 17, 20, 24, and 28 mN/m

Table T4. Summary of surface roughness data of LB monolayers of complex **3** and **4** depositedat different pressures

Figure S19. Asymmetric ruthenium(II) complexes investigated in the theoretical section (the - $C_{18}H_{37}$ group was replaced by a -CH₃ group)

Figure S20. (a) Fragment orbital analysis of the singlet state of **1-3** (a-c) in dichloromethane **Figure S21.** Ground state (singlet) frontier molecular orbitals of **1-3** complexes

Figure S22. Molecular orbital diagram of asymmetric Ru complexes in their singlet ground state. MO colors correspond to their character; blue - metal-based, green - MeO-terpyridine-based,

purple - mixed character with contributions from Ru metal and MeO-terpyridine, brown - substituted terpyridine based, black – mixed character with contributions from MeO-terpyridine and substituted terpyridine, red - phenanthroline based)

Figure S23. Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **1** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 - unoccupied orbital, 1.0 - singly-occupied orbital, 2.0 - doubly-occupied orbital)

Figure S24. Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **2** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 – unoccupied orbital, 1.0 – singly-occupied orbital, 2.0 – doubly-occupied orbital)

Figure S25. Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **3** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 – unoccupied orbital, 1.0 – singly-occupied orbital, 2.0 – doubly-occupied orbital)

Figure S26. Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **4** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 – unoccupied orbital, 1.0 – singly-occupied orbital, 2.0 – doubly-occupied orbital)

Table T5: Electrochemical data for asymmetric Ru(II) complexes in dichloromethane (PCM solventmodel), S = singlet, D = doublet and T = triplet

Figure S27. I-V characteristics of complex 4 in four devices

Figure S1: ESI mass spectrum of complex 1-3 (a-c)

Figure S2: ¹H-NMR spectrum of 4'-(4-(octadecyloxy)phenyl)-2,2':6'2"-terpyridine (Lterpy) ligand

Figure S3: ¹H-NMR spectrum of 4'-(4-nitrophenyl)- 2,2':6',2"-terpyridine (tpy^{NO2})

Figure S4: COSY NMR spectrum of complex [Ru(tpy^{OC18})(tpy)](PF₆)₂ 1

Figure S5: HSQC NMR spectrum of complex $[Ru(tpy^{OC18})(tpy)](PF_6)_2$ 1

Figure S6: COSY NMR spectrum of complex [Ru(tpy^{OC18})(phen)Cl](PF₆) 3

Figure S7: HSQC NMR spectrum of complex [Ru(tpy^{OC18})(phen)Cl](PF₆) 3

Figure S8: HSQC NMR spectrum of complex [Ru(tpy^{OC18})(phen^{NO2})Cl](PF₆) 4

Figure S9: UV-visible spectrum of complexes 1-4 in 1×10^{-5} M dichloromethane solution

 Table T1: UV-visible data for complexes 1-4

Complex	$λ_{max}$, nm (ε, L. mol ⁻¹ . cm ⁻¹) CH ₂ Cl ₂		
1	232, 274, 308, 486		
2	236, 284, 308, 494		
3	232, 268, 316, 514		
4	240, 272, 316, 522		

able T2: Redox potentials vs Fc/Fc ⁺ for complexes 1-4	
---	--

Process vs Fc/Fc ⁺	E _{1/2} (ΔE _P)/V			
Compound	I _{pa} /I _{pc}			
1	869 0.72	-1675 1.16	-1987 1.32	
2	879 0.60	-1383 1.73	-1563 0.82	-1941
3	346 0.70	-1919 2.74	-2370	
4	479 0.79	-1058 1.44	-1704 2.71	-1958

Figure S10. Isothermal compression data of complexes 1-4 (a-d)

(a) Complex 1

(c) Complex 3

Figure S11: BAM Images of Complexes 1, 2 and 3

(1)

Table T3. Transfer ratios of n	monolayers of complexes 1-4
--------------------------------	-----------------------------

Complex	Transfer ratio 1	Transfer ratio 2	Transfer ratio 3	
1	1.746	1.777	1.929	
2	0.607	0.678	0.767	
3	1.066	1.076	1.072	
4	1.049 1.035		1.031	

Figure S12. Comparison of UV-vis spectrum of LB films and solution state UV-vis spectrum of 3

Figure S13: Comparison of UV-vis spectrum of LB films and solution state UV-vis spectrum of 4

Figure S14: Comparison between IR spectrum of complex **4** in KBr and IRRAS spectrum of 47-layer LB film.

Figure S15: Comparison between IR spectrum of complex **3** in KBr and IRRAS spectrum of 47-layer LB film.

Figure S16: Mass spectrum of [Ru(tpy^{OC18})(phen)Cl](PF₆) **3** recovered from LB films

Figure S18: AFM images of complex 4 deposited at 18, 23 27, and 30 mN/m

Table T4: Summary of surface roughness data of LB monolayers of complex 3 and 4 deposited at

Complex 3		Complex 4		
Pressure/mN/m	Roughness/nm	Pressure/mN/m	Roughness/nm	
18	0.36 ± 0.1	17	0.22± 0.2	
23	0.35 ± 0.5	20	0.12± 0.1	
27	0.26 ± 0.5	24	0.31± 0.5	
30	0.26 ± 0.1	28	0.32± 0.5	

different pressures.

Figure S19: Asymmetric ruthenium(II) complexes investigated in the theoretical section (the - $C_{18}H_{37}$ group was replaced by a -CH₃ group)

Figure S20: (a) Fragment orbital analysis of the singlet state of 1-3 (a-c) in dichloromethane

Ru (Metal-based) MeO-terpy (MeO-tpy-based) substituted-terpy (tpy-based) Ru (Metal-based) MeO-terpy (MeO-tpy-based) substituted-terpy (tpy-based)

Ru (Metal-based) MeO-terpy (MeO-tpy-based) Phenanthroline(Phen-based) Cl (Cl-based)

Figure S21: Ground state (singlet) frontier molecular orbitals of 1-3 complexes

Figure S22: Molecular orbital diagram of asymmetric Ru complexes in their singlet ground state. MO colors correspond to their character; blue - metal-based, green - MeO-terpyridine-based,

purple - mixed character with contributions from Ru metal and MeO-terpyridine, brown - substituted terpyridine based, black – mixed character with contributions from MeO-terpyridine and substituted terpyridine, red - phenanthroline based)

The fragment schemes of the complexes:

Figure S23: Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **1** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 - unoccupied orbital, 1.0 - singly-occupied orbital, 2.0 - doubly-occupied orbital).

Figure S24: Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **2** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 - unoccupied orbital, 1.0 - singly-occupied orbital, 2.0 - doubly-occupied orbital).

Figure S25: Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **3** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 - unoccupied orbital, 1.0 - singly-occupied orbital, 2.0 - doubly-occupied orbital).

Figure S26: Natural orbitals (for open shell species) and molecular orbitals (for closed shell species) of the oxidized and reduced species of an asymmetric Ru complex **4** in dichloromethane. Orbital occupancy is shown for each orbital (0.0 – unoccupied orbital, 1.0 – singly-occupied orbital, 2.0 – doubly-occupied orbital).

[Ru(phen-NO₂)(tpy-OMe)Cl]²⁺ [Ru(phen-NO₂)(tpy-OMe)Cl]⁺ [Ru(phen-NO₂)(tpy-OMe)Cl]⁰ [Ru(phen-NO₂)(tpy-OMe)Cl]⁻ [Ru(phen-NO₂)(tpy-OMe)Cl]²⁻

Redox reaction	E _{1/2}	E _{1/2}	Assignment
	(Calc.)	(Exp)	
$[Ru(tpy)(tpy-OMe)]^{3+} (D) \rightarrow [Ru(tpy)(tpy-OMe)]^{2+} (S)$	1.28	0.87	Ru(II/III)
$[Ru(tpy)(tpy-OMe)]^{2+}(S) \rightarrow [Ru(tpy)(tpy-OMe)]^{+}(D)$	-1.33	-1.66	tpy/tpy-
$[Ru(tpy)(tpy-OMe)]^{+} (D) \rightarrow [Ru(tpy)(tpy-OMe)]^{0} (T)$	-2.12	-1.98	tpy/tpy-
$[Ru(NO_2-tpy)(tpy-OMe)]^{3+}(D) \rightarrow [Ru(NO_2-tpy)(tpy-OMe)]^{2+}(S)$	1.34	0.88	Ru(II/III)
$[Ru(NO_2-tpy)(tpy-OMe)]^{2+}(S) \rightarrow [Ru(NO_2-tpy)(tpy-OMe)]^{+}(D)$	-1.16	-1.34	NO ₂ /NO ₂ -
$[Ru(NO_2-tpy)(tpy-OMe)]^+(D) \rightarrow [Ru(NO_2-tpy)(tpy-OMe)]^0 (T)$	-1.81	-1.56	tpy/tpy-
$[Ru(NO_2-tpy)(tpy-OMe)]^0 (T) \rightarrow [Ru(NO_2-tpy)(tpy-OMe)]^- (D)$	-2.46	-1.94	tpy/tpy [_]
$[Ru(phen)(tpy-OMe)Cl]^{2+}(D) \rightarrow [Ru(phen)(tpy-OMe)Cl]^{+}(S)$	0.50	0.35	Ru(II/III)
[Ru(phen)(tpy-OMe)Cl]⁺ (S) → [Ru(phen)(tpy-OMe)Cl] ⁰ (D)	-1.86	-1.91	tpy/tpy [_]
$[Ru(phen)(tpy-OMe)Cl]^{\circ}(D) \rightarrow [Ru(phen)(tpy-OMe)Cl]^{-}(T)$	-2.49	-2.40	phen/phen ⁻
$[Ru(NO_2-phen)(tpy-OMe)Cl]^{2+}(D) \rightarrow [Ru(NO_2-phen)(tpy-OMe)Cl]^+ (S)$	0.58	0.48	Ru(II/III)
$[Ru(NO_2-phen)(tpy-OMe)Cl]^+(S) \rightarrow [Ru(NO_2-phen)(tpy-OMe)Cl]^0 (D)$	-1.15	-1.06	NO_2/NO_2^-
$[Ru(NO_2-phen)(tpy-OMe)Cl]^0(D) \rightarrow [Ru(NO_2-phen)(tpy-OMe)Cl]^{1-}(T)$	-2.15	-1.71	tpy/tpy-
[Ru(NO ₂ -phen)(tpy-OMe)Cl] ¹⁻ (T)→[Ru(NO ₂ -phen)(tpy-OMe)Cl] ²⁻ (D)	-2.90	-2.08	phen/phen ⁻

Table T5: Electrochemical data for asymmetric Ru(II) complexes in dichloromethane (PCM solventmodel), S = singlet, D = doublet and T = triplet

Assembly 1

Assembly 2

-0.25 -

-0.06

-0.08

-0.10

