Supporting Information

Photochemically Generated Reactive Sites at Ruthenium/Gallium Complexes: Catalysis vs. Cluster Growth.

Raphael Bühler^{# a}, Maximilian Muhr^{# a}, Johannes Stephan ^a, Robert Wolf ^a, Max Schütz ^a, Christian Gemel ^a, Roland A. Fischer *^a

a) Chair of Inorganic and Metalorganic Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University Munich, Lichtenbergstraße 4, D-85748 Garching, Germany and Catalysis Research Center, Ernst-Otto-Fischer-Straße 1, D-85748 Garching, Germany.

Email: roland.fischer@tum.de

[#]M.M. and R.B. equally contributed to this work

Table of Contents

Crystallographic Data	3
NMR spectra	7
LIFDI mass spectra	21
IR spectra	30
UV-Vis spectra	31

Crystallographic Data

Figure S1: Crystal structure of [(dppe)Ru(GaCp*)₃]. Co-crystallized molecule n-hexane and hydrogen atoms omitted for clarity. Ellipsoids drawn at 50% probability. Cp* in wireframes.

Table S1:	Crystallographic	data table for	compound 4.
-----------	------------------	----------------	-------------

Chemical formula	$C_{62}H_{83}Ga_3P_2Ru$	
Formula weight	1200.45	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal size	0.059 x 0.066 x 0.225 mm	
Crystal habit	red-orange fragment	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 19.841(3) Å	α = 90°
	b = 12.724(2) Å	$\beta = 99.625(7)^{\circ}$
	c = 22.940(4) Å	γ = 90°
Volume	5709.8(16) ų	
Z	4	
Density (calculated)	1.397 g/cm ³	
Absorption coefficient	1.753 mm ⁻¹	
F(000)	2488	
Diffractometer	Bruker D8 Venture	

Badiation source	TXS rotating anode. Mo	
Theta range for data collection		
	2.41 to 25.68	
Index ranges	-24<=h<=24, -15<=k<=15, -27<=l<=27	
Reflections collected	226471	
Indepedent reflections	10838 [R(int) = 0.1954]	
Coverage of independent reflections	99.9%	
Absorption correction	Multi-Scan	
Structure solution technique	direct methods	
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	
Data / restraints / parameters	10838 / 0 / 630	
Goodness-of-fit on F ²	1.021	
Δ/σ _{max}	0.001	
Final R indices	6979 data; I>2σ(I) R1 = 0.0496,	
	all data wR2 = 0.0861	
	R1 = 0.1073,	
	wR2 = 0.1037	
Weighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0318P)^{2}+16.8706P]$	
	where $P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	0.982 and -0.774 eÅ ⁻³	
R.M.S. deviation from mean	0.114 eÅ ⁻³	

Figure S2: Crystal structure of [(Et₃P)₂Ru(GaCp*)₃]. Co-crystallized molecule n-hexane and hydrogen atoms omitted for clarity. Ellipsoids drawn at 50% probability. Cp* in wireframes.

Chemical formula	$C_{48}H_{88.07}Ga_{3}P_{2}Ru$	
Formula weight	1037.42	
Temperature	123(2) K	
Wavelength	0.71073 Å	
Crystal size	0.238 x 0.321 x 0.374 mm	
Crystal habit	orange block	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 12.268(4) Å	α = 90°
	b = 19.291(7) Å	β = 90°
	c = 21.580(6) Å	γ = 90°
Volume	5107.(3) Å3	
Z	4	
Density (calculated)	1.349 g/cm ³	
Absorption coefficient	1.948 mm ⁻¹	
F(000)	2172	
Diffractometer	Bruker D8 Venture	
Radiation source	TXS rotating anode, Mo	

Table S2: Crystallographic data table for compound $[Ru(GaCp^*)_3(PEt_3)_2]$.

Theta range for data collection	2.51 to 25.90°	
Index ranges	-14<=h<=15, -23<=k<=23, -26<=l<=26	
Reflections collected	137547	
Indepedent reflections	9855 [R(int) = 0.0279]	
Coverage of independent reflections	99.3%	
Absorption correction	Multi-Scan	
Structure solution technique	direct methods	
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2019/1 (Sheldrick, 2019)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	
Data / restraints / parameters	9855 / 101 / 531	
Goodness-of-fit on F ²	1.051	
Δ/σ_{max}	0.003	
Final R indices	9563 data; I>2σ(I)	R1 = 0.0172,
	all data	wR2 = 0.0451
		R1 = 0.0183,
		wR2 = 0.0455
Weighting scheme	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0257P)^{2}+1.6529P]$	
	where $P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	0.485 and -0.396 eÅ ⁻³	
R.M.S. deviation from mean	0.049 eÅ ⁻³	

Figure S3: ¹H NMR spectrum of **1** after 30 min irradiation at 350 nm in C_6D_{12} .

Figure S4: ¹H NMR spectrum of **1** after 30 min irradiation at 350 nm in C_6D_{12} . Excerpt of the aliphatic range.

Figure S5: ¹H NMR spectrum of **1** after 30 min irradiation at 350 nm in C_6D_{12} . Excerpt showing free hydrogen (4.54 ppm) and free triethylsilane (3.69 ppm, H-Si).

Figure S6: ¹H NMR spectrum of **1** after 30 min irradiation at 350 nm in C_6D_{12} . Excerpt of the hydridic range, showing two new signals at -11.46 and -14.58 ppm.

Figure S7: Full range ¹H NMR of **4** in C₆D₁₂. No new hydride signals.

Figure S8: Zoomed into ¹H NMR of **4** in C_6D_{12} .

Figure S9: Zoomed into ¹H NMR of **4** in C_6D_{12} – aliphatic range.

Figure 10: SFull range ${}^{13}C$ NMR of **4** in C_6D_{12} .

Figure S11: Zoomed into ${}^{13}C$ NMR of **4** in C₆D₁₂.

Figure S13: Full range DEPT 135 of $\mathbf{4}$ in C_6D_{12} .

Figure S14: Zoomed into DEPT 135 of **4** in C₆D₁₂. Negative ¹³C triplet (due to ³¹P coupling) of dppe H₂C-CH₂ bridge.

Figure S15: Full range HSQC spectrum of $\mathbf{4}$ in C_6D_{12} .

Figure S16: HSQC spectrum of 4 in C_6D_{12} – aliphatic range.

Figure S17: HSQC spectrum of **4** in C_6D_{12} – aromatic range.

Figure S18: Full range ${}^{31}P$ spectrum of **4** in C_6D_{12} .

Figure S19: Variable Temperature ¹H-NMR spectra of **4** between -80 and 0 °C in n-hexane-d₁₄.

Figure S20: Variable Temperature ³¹P-NMR spectra of **4** between -80 and 0 °C in n-hexane-d₁₄.

Figure S21: ¹H NMR spectrum of the reaction of **1** with H_2 under 1 h irradiation (350 nm).

Figure S22: Excerpt of ¹H NMR spectrum of the reaction of **1** with H_2 under 1 h irradiation (350 nm). Showing peaks of free Cp*H at 1.71 and 1.77 ppm.

Figure S23: Full range stacked ¹H NMR spectra of the conversion of 3-hexyne with **1** (5 mol%) under a dihydrogen atmosphere (2 bar) at 350 nm. Hydride shift of **1** at -13.6 ppm; alkenes and hydrosilylation products between 4.75 and 6.0 ppm.

Figure S24: Zoomed in stacked ¹H NMR spectra of the conversion of 3-hexyne with **1** (5 mol%) under a dihydrogen atmosphere (2 bar) at 350 nm. 3-Hexyne at 2.06 and 1.05 ppm; n-hexane (CH₂) between 1.20 and 1.36 ppm; CH₃ of n-hexane and hexenes between 0.85 and 1.01 ppm.

Figure S25: Full range ¹H NMR spectrum of the conversion of 3-hexyne (1.0 eq.) and $HSiEt_3$ (5.0 eq.) with **1** (5 mol% against 3-hexyne) at 350 nm.

Figure S26: Zoomed in ¹H NMR spectrum of the conversion of 3-hexyne (1.0 eq.) and HSiEt₃ (5.0 eq.) with **1** (5 mol% against 3-hexyne) at 350 nm.

Figure S27: Full range ¹H NMR spectra of the conversion of 3-hexyne with **1** (1 mol%) under a dihydrogen atmosphere (2 bar) after 24h at 350 nm.

Figure S28: Zoomed in ¹H NMR spectra of the conversion of 3-hexyne with **1** (1 mol%) under a dihydrogen atmosphere (2 bar) after 24h at 350 nm. Hexenes and hydrosilylation products between 4.75 and 6.0 ppm; n-hexane (CH₂) between 1.20 and 1.36 ppm; CH₃ of n-hexane and hexenes between 0.85 and 1.01 ppm.

Figure S29: LIFDI mass spectrum of **1** after 8 h irradiation in cyclohexane. Main pattern corresponds to **1** (m/z = 832.13) [M-2H]⁺.

Figure S30: Excerpt of LIFDI mass spectrum of **1** after 8 h irradiation in cyclohexane. No peaks at higher masses – barely any cluster growth visible.

Figure S31: LIFDI mass spectrum of [(dppe)Ru(GaCp*)₃] **4**. [M]⁺ (m/z = 1114.1656; calc. 1114.1671); [M-Cp*]⁺ (m/z = 979.0478; calc. 979.0497); [M-2Cp*-Ga]⁺ (m/z = 775.0068; calc. 775.0080). Main peak at m/z = 898.1727 attributed to [$Ru(dppe)_2$] (calc. 775.0080), formation assumed upon ionization.

Figure S32: LIFDI mass spectrum of 4. Excerpt of isotopic pattern of 4. $[M]^+$ (m/z = 1114.1656; calc. 1114.1671).

Figure S33: In situ LIFDI mass spectrum of the reaction **1** with 1 eq 1,2-bis(diphenylphosphino)benzene after 24 h irradiation (350 nm).

Figure S34: Excerpt of LIFDI mass spectrum of the reaction 1 with 1 eq 1,2-bis(diphenylphosphino)benzene (dppbz) after 24 h irradiation (350 nm). Peaks assigned to: $m/z = 1162.18 [(dppbz)Ru(GaCp^*)_3]^+$ (calc. 1162.17); $m/z = 1027.05 [M-Cp^*]^+$ (calc. 1027.05).

Figure S35: In situ LIFDI mass spectrum of the reaction 1 with 2 eq trimethyl phosphine after 24 h irradiation (350 nm).

Figure S36: Excerpt of LIFDI mass spectrum of the reaction **1** with 2 eq trimethyl phosphine (PMe₃) after 24 h irradiation (350 nm). Peak assigned to: $m/z = 868.1195 [(Me_3P)_2Ru(GaCp^*)_3]^+$ (calc. 868.1202).

Figure S37: In situ LIFDI mass spectrum of the reaction **1** with 2 eq triethyl phosphine after 24 h irradiation (350 nm).

Figure S38: Excerpt of LIFDI mass spectrum of the reaction **1** with 2 eq triethyl phosphine (PEt₃) after 24 h irradiation (350 nm). Peak assigned to: m/z = 952.2143 [(Et₃P)₂Ru(GaCp*)₃]⁺ (calc. 952.2141).

Figure S39: In-situ LIFDI mass spectrum of catalytic hydrogenation of 20 eq 3-hexyne under irradiation.

Figure S40: Excerpt of in-situ LIFDI mass spectrum of catalytic hydrogenation of 20 eq 3-hexyne under irradiation. Peak attributed to $[Ru(GaCp^*)_3(hexene)]$ (A_2 ; m/z = 800.1251; calc. 800.1257) significantly more intense than peak attributed to $[Ru(GaCp^*)_3(hexyne)(hexene)]$ (B; m/z = 882.2044; calc. 882.2039). Inverse to reaction with higher 3-hexyne concentration. Peak at m/z = 832 results from unconverted **1**.

Figure S41: In-situ LIFDI mass spectrum of catalytic hydrogenation of 100 eq 3-hexyne under irradiation.

Figure S42: Excerpt of in-situ LIFDI mass spectrum of catalytic hydrogenation of 100 eq 3-hexyne under irradiation. Peak attributed to [Ru(GaCp*)₃(hexyne)(hexene)] (**B**; m/z = 882.1997; calc. 882.2039) significantly more intense than peak attributed to [Ru(GaCp*)₃(hexene)] (**A**₂; m/z = 800.1180; calc. 800.1257). Inverse to reaction with lower 3-hexyne concentration. Peak at m/z = 832 results from unconverted **1**.

Figure S43: LIFDI mass spectrum of the reaction of $\mathbf{1}$ with H_2 under 3 h irradiation (350 nm).

Figure S44: Excerpt of LIFDI mass spectrum of the reaction of **1** with H_2 under 3 h irradiation (350 nm). Peaks assigned to composition as following: m/z = 1026.96 ($Ru_2Ga_4Cp^*_4H_5$), m/z = 1612.60 ($Ru_3Ga_9Cp^*_5H_5$), m/z = 1710.07 ($Ru_2Ga_8Cp^*_7H_3$) and m/z = 1747.73 ($Ru_3Ga_9Cp^*_6H_5$).

Figure S45: LIFDI mass spectrum after the catalytic conversion 3-hexyne with **1** and H₂ (2 bar) under 24 h irradiation (350 nm) in cyclohexane-d₁₂.

Figure S46: Excerpt of LIFDI mass spectrum after the catalysis. Several new clusters are formed: m/z = 1024.00 ($Ru_2Ga_4Cp^*_4H_2$); m/z = 1093.92 ($Ru_2Ga_5Cp^*_4H$); 1481.96 ($Ru_2Ga_7Cp^*_5SiEt_3H$); m/z = 1710.07 ($Ru_2Ga_8Cp^*_7H_3$).

Figure S47: ATR-IR spectrum of [Ru(GaCp*)₃(dppe)] (4). No typical Ru-H bands (range between 1600 and 2000 cm⁻¹).

Figure S48: UV-Vis of **1** in cyclohexane. Reprinted with permission.^[S1]