Supporting Information

Highly Stable Lanthanide(III) Metal-organic Frameworks as

Ratiometric Fluorescence Sensors for Vitamin B₆

Xiao-Qing Wang^{a,c*}, Jiandong Yang^a, Man Zhang^a, Dan Wu^a, Tuoping Hu^{a,c} and Jie Yang^{b*}

[a] Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.

[b] Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.

[c] Shanxi Key Laboratory of advanced carbon based electrode materials, North University of China, Taiyuan 030051, China

EXPERIMENTAL SECTION

Materials and General Methods. All materials and chemicals are purchased and used without further purification. Human serum was purchased from AmyJet Scientific Inc., which was diluted 20 times with deionized water for use. The organic ligand 1,1'-ethynebenzene-3,3',5,5' -tetracarboxylic acid (H4EBTC) was purchased from Jilin Yanshen Technology Co. , Ltd and 2-Fluorobenzoic acid was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Thermogravimetric analyses (TGA) were tested using a ZCT-A analyzer under nitrogen atmosphere within 25-800 °C region. FTIR-8400S spectrometer was used to record Fourier transform infrared (IR) spectroscopy at the rang of the 4000-400 cm⁻¹. UV-2600 spectrophotometer was used to record UV-vis absorption spectra. X-ray photoelectron spectroscopy (XPS) experiment was performed on a Thermo ESCALAB 250XI. Elemental analyses including C, H were measured using Vario MACRO cube elemental analyzer. Photoluminescence obtained through Hitachi F-4600 spectrum was fluorescence spectrophotometer. The overall photoluminescence quantum yields were obtained on an integrating sphere covered with barium sulfate at room temperature.^[s1] The Gas-sorption isotherms were carried out on the surface area analyzer ASAP-2020.

Preparation of Ln-MOFs@SA hydrogel [Ln=Eu (1), Tb (2)]. Taking complex 1@SA as an example, the suspension of complex 1 was prepared to dispersed complex 1 (1.5 mg) powder in deionized water (1 mL) by ultrasonic method. Deionized water (20 mL) was heated to boiling, and then sodium alginate (SA) powder (1.0 g) was dissolved in the boiling water to form SA solution. Drop 0.25 mL SA solution into the suspension and stir continuously for 1 h to form complex 1@SA. The mixture was poured into the purchased mold and cooled to room temperature to form the complex 1@SA hydrogel.

Preparation of Ln-MOFs@SA film [Ln=Eu (1), Tb (2)]. The prepared complex 1@SA hydrogel was heated and dried in an oven at 80 °C for 2 h to obtain the complex 1@SA film.

Fluorescence detection of vitamin B_6 . The fluorescence properties of the complexes 1 and 2 suspension with different analytes were studied at room temperature. Taking complex 1 as an example, the 1 suspension was prepared by adding 1.0 mg of the 1 powder sample to 2.0 mL of phosphate buffer solutions (PBS, pH=7.35) of different analytes (0.010 mol·L⁻¹), including proline

(Pro), glycine (Gly), glutamine (Gln), leucine (Leu), methionine (Met), phenylalanine (Phe), histidine (His), threonine (Thr), asparaginic acid (Asp), cysteine (Cys), asparagine (Asn), valine (Val), isoleucine (Ile), vitamin C (VC), vitamin B₁ (VB₁), vitamin B₆ (VB₆), glutataione (GSH), uric acid (UA), ultrasonicating the solution for 30 min, and placing it overnight to let it form a uniform emulsion.

Fluorescence titration experiment. Taking complex **1** as an example, the 1.0 mg powder of **1** was dispersed in 2 mL solution of the target analytes at different concentrations.

Fluorescence determination of recovery experiment. Taking complex 1 as an example, the powder of 1 was centrifuged from the suspension, washed (three times with deionized water) and dried. Then it was added again to the target analyte to determine its fluorescence performance. The above operation was repeated five times.

Time-varying flourescence sensing experiment. Taking complex 1 as an example, the fluorescence spectra of 1 in VB₆ (0.005 M) PBS buffer were recorded within 6 min.

Sensing of vitamin B_6 in human serum. Taking complex 1 as an example, 10 µL of human serum (diluted by 20 fold) was added to an aqueous solution of 1 mg·L⁻¹ complex 1, and then sonicate for 15 min to obtained a stable suspension. A series of vitamin B_6 PBS buffer with different concentrations were added to the suspension to record its fluorescence spectra.

Complexes	1	2	3
Formula	$C_{27}H_{19}Eu_{3}O_{19}$	$C_{27}H_{19}Tb_3O_{19}$	C ₂₇ H ₁₉ Ce ₃ O ₁₉
M_r	1103.33	1124.18	1067.78
pace group	<i>R-3c</i>	<i>R-3c</i>	<i>R-3c</i>
<i>a</i> (Å)	17.6167(6)	17.6231(8)	17.9267(4)
<i>b</i> (Å)	17.6167(6)	17.6231(8)	17.9267(4)
<i>c</i> (Å)	49.2103(14)	48.762(2)	49.8631(16)
α (deg)	90	90	90
β deg)	90	90	90
γ (deg)	120	120	120
Ζ	12	12	12
$V(Å^3)$	13226.3(9)	13115.3(13)	13877.5(8)
$D_{\rm c}({\rm g~cm^{-3}})$	1.635	1.708	1.508
μ (mm ⁻¹)	30.674	24.001	22.931
F (000)	6156.0	6336.0	5974.0
no. of unique reflns	9306	14436	15818
no. of obsd reflns $[I > 2\sigma(I)]$	2628	2975	3105
Parameters	144	149	149
GOF	1.063	0.880	1.084
	$R_1 = 0.0634$	$R_1 = 0.0559,$	$R_1 = 0.0980,$
Final <i>R</i> indices $[I \ge 2\sigma(I)]^{a,b}$	$wR_2 = 0.1632$	$wR_2 = 0.1533$	$wR_2 = 0.2499$

Table S1 Crystal data for complexes 1-3.

R indices (all data)	$R_1 = 0.0.0671$	$R_1 = 0.0711$,	$R_1 = 0.1129$
	$wR_2 = 0.1662$	$wR_2 = 0.1630$	wR ₂ =0.2629
$\rho_{max/}\rho_{min}\left(e~\text{\AA}^{-3}\right)$	2.56 and -5.70	1.21 and -1.06	2.39 and -1.44
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} {}^{b}wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\right]^{0.5}.$			

Table S2 Selected bond lengths (Å) and angles (o) for complexes 1-3.

Complex 1

Eu1—Eu1 ⁱ	3.9990 (9)	O5 ⁱ —Eu1—Eu1 ⁱⁱ	158.06 (15)
Eu1—Eu1 ⁱⁱ	3.9581 (9)	O5 ⁱ —Eu1—Eu1 ⁱⁱⁱ	102.44 (15)
Eu1—Eu1 ⁱⁱⁱ	3.9581 (9)	O5 ⁱ —Eu1—Eu1 ⁱ	68.88 (15)
Eu1—O4	2.376 (6)	O5 ⁱ —Eu1—O6 ^{iv}	77.0 (2)
Eu1—O5 ⁱ	2.404 (6)	O5 ⁱ —Eu1—H2	133.2
Eu1—O6 ^{iv}	2.409 (7)	O5 ⁱ —Eu1—H1	59.6
Eu1—O7 ^v	2.365 (7)	O5 ⁱ —Eu1—O3	66.5 (2)
Eu1—O2	2.366 (3)	O6 ^{iv} —Eu1—Eu1 ⁱ	108.84 (19)
Eu1—H2	2.7127	O6 ^{iv} —Eu1—Eu1 ⁱⁱⁱ	69.62 (18)
Eu1—O1	2.364 (6)	O6 ^{iv} —Eu1—Eu1 ⁱⁱ	105.81 (18)
Eu1—O1 ^{vi}	2.387 (6)	O6 ^{iv} —Eu1—H2	62.7
Eu1—O1 ⁱⁱ	2.367 (6)	O6 ^{iv} —Eu1—H1	66.3
Eu1—H1	2.7044	O6 ^{iv} —Eu1—O3	65.1 (2)
Eu1—O3	2.619 (7)	O7 ^v —Eu1—Eu1 ⁱⁱ	67.99 (19)
Eu1 ⁱⁱⁱ —Eu1—Eu1 ⁱⁱ	60	O7 ^v —Eu1—Eu1 ⁱⁱⁱ	107.1 (2)
Eu1 ⁱⁱⁱ —Eu1—Eu1 ⁱ	60.339 (8)	O7v—Eu1—Eu1 ⁱ	157.91 (19)
Eu1 ⁱⁱ —Eu1—Eu1 ⁱ	90	O7 ^v —Eu1—O4	84.9 (2)
Eu1 ⁱⁱ —Eu1—H2	43.2	$O7^v$ —Eu1— $O5^i$	133.2 (2)
Eu1 ⁱ —Eu1—H2	101.6	O7v—Eu1—O6 ^{iv}	80.3 (3)
Eu1 ⁱⁱⁱ —Eu1—H2	43.2	O7 ^v —Eu1—H2	63.9
Eu1 ⁱⁱ —Eu1—H1	100.9	O7v—Eu1—O1 ⁱⁱ	75.7 (2)
Eu1 ⁱⁱⁱ —Eu1—H1	43	O7v—Eu1—O1vi	137.3 (2)
Eu1 ⁱ —Eu1—H1	42.5	O7 ^v —Eu1—H1	140.7
O4—Eu1—Eu1 ⁱ	101.52 (14)	O7 ^v —Eu1—O3	66.9 (2)
O4—Eu1—Eu1 ⁱⁱⁱ	156.96 (15)	O2—Eu1—Eu1 ⁱⁱⁱ	33.22 (10)
O4—Eu1—Eu1 ⁱⁱ	109.45 (15)	O2—Eu1—Eu1 ⁱ	86.3 (2)
O4—Eu1—O5 ⁱ	81.6 (2)	O2—Eu1—Eu1 ⁱⁱ	33.22 (10)
O4—Eu1—O6 ^{iv}	132.9 (2)	O2—Eu1—O4	142.44 (17)
O4—Eu1—H2	143.6	O2—Eu1—O5 ⁱ	134.38 (15)
O4—Eu1—O1 ^{vi}	72.8 (2)	O2—Eu1—O6 ^{iv}	75.8 (3)
O4—Eu1—H1	133	O2—Eu1—O7 ^v	76.3 (3)
O4—Eu1—O3	67.9 (2)	O2—Eu1—H2	17.6
O2—Eu1—O1 ^{vi}	99.8 (3)	O1 ^{vi} —Eu1—H1	74.9
O2—Eu1—O1 ⁱⁱ	65.7 (2)	O1—Eu1—O3	130.6 (2)
O2—Eu1—H1	76	O1 ⁱⁱ —Eu1—O3	130.8 (2)

O2—Eu1—O3	129.4 (3)	O1 ^{vi} —Eu1—O3	130.8 (2)	
H2—Eu1—H1	82.1	O3—Eu1—Eu1 ⁱⁱⁱ	134.69 (15)	
O1—Eu1—Eu1 ⁱⁱⁱ	33.22 (15)	O3—Eu1—Eu1 ⁱ	135.16 (15)	
O1 ⁱⁱ —Eu1—Eu1 ⁱⁱⁱ	85.47 (15)	O3—Eu1—Eu1ii	134.84 (15)	
O1 ^{vi} —Eu1—Eu1 ⁱⁱ	85.51 (15)	O3—Eu1—H2	111.8	
O1 ^{vi} —Eu1—Eu1 ⁱⁱⁱ	85.55 (15)	O3—Eu1—H1	112.9	
O1—Eu1—Eu1 ⁱⁱ	85.50 (15)	C9—O4—Eu1	130.2 (6)	
O1—Eu1—Eu1 ⁱ	32.87 (15)	C9—O5—Eu1 ^{vi}	127.6 (6)	
O1 ⁱⁱ —Eu1—Eu1 ⁱⁱ	33.19 (15)	C1—O6—Eu1 ^{viii}	135.3 (7)	
O1 ^{vi} —Eu1—Eu1 ⁱ	32.57 (15)	C1—O7—Eu1 ^{ix}	139.4 (7)	
O1 ⁱⁱ —Eu1—Eu1 ⁱ	84.86 (15)	Eu1—O2—Eu1 ⁱⁱ	113.6 (2)	
O1 ⁱⁱ —Eu1—O4	78.4 (2)	Eu1—O2—Eu1 ⁱⁱⁱ	113.6 (2)	
O1—Eu1—O4	133.5 (2)	Eu1 ⁱⁱ —O2—Eu1 ⁱⁱⁱ	113.6 (2)	
O1 ⁱⁱ —Eu1—O5i	142.9 (2)	Eu1—O2—H2	105	
O1—Eu1—O5 ⁱ	73.6 (2)	Eu1 ⁱⁱⁱ —O2—H2	105	
O1 ^{vi} —Eu1—O5 ⁱ	79.7 (2)	Eu1 ⁱⁱ —O2—H2	105	
O1vi—Eu1—O6 ^{iv}	140.9 (2)	Eu1—O1—Eu1 ⁱⁱⁱ	113.6 (3)	
O1 ⁱⁱ —Eu1—O6 ^{iv}	138.3 (2)	Eu1—O1—Eu1 ⁱ	114.6 (2)	
O1—Eu1—O6 ^{iv}	78.8 (2)	Eu1 ⁱⁱⁱ —O1—Eu1 ⁱ	114.5 (2)	
O1—Eu1—O7 ^v	140.0 (3)	Eu1—O1—H1	104.5	
O1—Eu1—O2	65.7 (2)	Eu1 ⁱ —O1—H1	103.4	
O1—Eu1—H2	76.2	Eu1 ⁱⁱⁱ —O1—H1	104.5	
O1 ⁱⁱ —Eu1—H2	76.1	Eu1—O3—H3A	127.6	
O1 ^{vi} —Eu1—H2	117.4	Eu1—O3—H3B	127.7	
O1—Eu1—O1 ^{vi}	64.7 (2)	C2-C1-O6-Eu1viii	-172.8 (8)	
O1—Eu1—O1 ⁱⁱ	98.6 (3)	C2—C1—O7—Eu1 ^{ix}	164.0 (8)	
O1 ⁱⁱ —Eu1—O1 ^{vi}	64.6 (2)	O6—C1—O7—Eu1 ^{ix}	-14 (2)	
O1 ⁱⁱ —Eu1—H1	116.3	O7—C1—O6—Eu1 ^{viii}	4.9 (19)	
O1—Eu1—H1	17.7			
Symmetry codes: (i) y, -x+y, -z+1; (ii) -y, x-y, z; (iii) -x+y, -x, z; (iv) -y+2/3, -x+1/3, z-1/6; (v)				
x-1/3, x-y+1/3, z-1/6	; (vi) x-y, x, -z+1;	(vii) -x+1, -y+1, -z+1; (viii) -y	x+1/3, -x+2/3, z+1/6; (ix)	
x+1/3, x-y+2/3, z+1/6.				

Tb1—Tb1 ⁱ	3.9203 (8)	O3—Tb1—O6	130.3 (4)
Tb1—Tb1 ⁱⁱ	3.9203 (8)	O3—Tb1—O5 ^v	75.9 (2)
Tb1—Tb1 ⁱⁱⁱ	3.9548 (8)	O3—Tb1—O7 ^{vi}	76.0 (2)
Tb1—O2	2.355 (4)	O1 ⁱⁱⁱ —Tb1—Tb1 ⁱⁱ	109.51 (16)
Tb1—O2 ⁱⁱⁱ	2.343 (5)	Ol ⁱⁱⁱ —Tb1—Tb1 ⁱ	157.47 (15)
Tb1—O2 ^{iv}	2.357 (5)	O1 ⁱⁱⁱ —Tb1—Tb1 ⁱⁱⁱ	68.01 (16)
Tb1—O4	2.376 (6)	O1 ⁱⁱⁱ —Tb1—O4	82.1 (2)
Tb1—O3	2.342 (2)	O1 ⁱⁱⁱ —Tb1—O6	66.1 (4)
Tb1—O1 ⁱⁱⁱ	2.364 (6)	O1 ⁱⁱⁱ —Tb1—O5 ^v	132.3 (2)

Complex 2

Tb1—O6	2.67 (2)	O6—Tb1—Tb1 ⁱ	136.0 (4)
Tb1—O5 ^v	2.370 (6)	O6—Tb1—Tb1 ⁱⁱ	134.6 (4)
Tb1—O7 ^{vi}	2.339 (6)	O6—Tb1—Tb1 ⁱⁱⁱ	134.0 (4)
Tb1 ⁱⁱ —Tb1—Tb1 ⁱⁱⁱ	60.286 (8)	O5 ^v —Tb1—Tb1 ⁱ	69.72 (15)
Tb1 ⁱⁱ —Tb1—Tb1 ⁱ	60	O5 ^v —Tb1—Tb1 ⁱⁱⁱ	159.64 (15)
Tb1 ⁱ —Tb1—Tb1 ⁱⁱⁱ	90	O5 ^v —Tb1—Tb1 ⁱⁱ	105.73 (17)
O2 ^{iv} —Tb1—Tb1 ⁱⁱⁱ	85.14 (12)	O5 ^v —Tb1—O4	76.5 (2)
O2 ⁱⁱⁱ —Tb1—Tb1 ⁱ	85.95 (12)	O5 ^v —Tb1—O6	66.3 (4)
O2 ^{iv} —Tb1—Tb1 ⁱ	33.36 (12)	O7 ^{vi} —Tb1—Tb1 ⁱⁱⁱ	104.99 (17)
O2—Tb1—Tb1 ⁱⁱⁱ	32.94 (12)	O7vi—Tb1—Tb1 ⁱ	106.85 (18)
O2—Tb1—Tb1 ⁱ	85.76 (12)	O7 ^{vi} —Tb1—Tb1 ⁱⁱ	67.59 (17)
O2—Tb1—Tb1 ⁱⁱ	85.97 (13)	O7 ^{vi} —Tb1—O2 ^{iv}	139.9 (2)
O2 ⁱⁱⁱ —Tb1—Tb1 ⁱⁱⁱ	32.75 (11)	O7 ^{vi} —Tb1—O2	137.3 (2)
O2 ^{iv} —Tb1—Tb1 ⁱⁱ	85.77 (12)	O7 ^{vi} —Tb1—O4	133.3 (2)
O2 ⁱⁱⁱ —Tb1—Tb1 ⁱⁱ	33.59 (12)	O7 ^{vi} —Tb1—O1 ⁱⁱⁱ	84.5 (2)
O2 ⁱⁱⁱ —Tb1—O2	65.03 (16)	O7 ^{vi} —Tb1—O6	67.0 (5)
O2 ⁱⁱⁱ —Tb1—O2 ^{iv}	99.3 (2)	O7 ^{vi} —Tb1—O5 ^v	80.3 (2)
O2—Tb1—O2 ^{iv}	64.82 (15)	Tb1 ^{iv} —O2—Tb1 ⁱⁱⁱ	113.1 (2)
O2—Tb1—O4	79.77 (19)	Tb1 ^{iv} —O2—Tb1	114.68 (19)
O2 ⁱⁱⁱ —Tb1—O4	143.27 (19)	Tb1—O2—Tb1 ⁱⁱⁱ	114.15 (19)
O2 ^{iv} —Tb1—O4	73.27 (19)	Tb1 ^{iv} —O2—H2	104.5
O2—Tb1—O1 ⁱⁱⁱ	73.15 (19)	Tb1—O2—H2	104.5
O2 ⁱⁱⁱ —Tb1—O1 ⁱⁱⁱ	78.1 (2)	Tb1 ⁱⁱⁱ —O2—H2	104.5
O2 ^{iv} —Tb1—O1 ⁱⁱⁱ	134.07 (19)	C7—O4—Tb1	127.7 (5)
O2 ⁱⁱⁱ —Tb1—O6	129.3 (5)	Tb1 ⁱⁱ —O3—Tb1 ⁱ	113.63 (15)
O2 ^{iv} —Tb1—O6	131.4 (5)	Tb1—O3—Tb1 ⁱⁱ	113.63 (15)
O2—Tb1—O6	129.6 (4)	Tb1—O3—Tb1 ⁱ	113.63 (15)
O2 ⁱⁱⁱ —Tb1—O5 ^v	138.5 (2)	Tb1—O3—H3	104.9
O2—Tb1—O5 ^v	141.0 (2)	Tb1 ⁱⁱ —O3—H3	104.9
O2 ^{iv} —Tb1—O5 ^v	78.8 (2)	Tb1 ⁱ —O3—H3	104.9
O2 ⁱⁱⁱ —Tb1—O7 ^{vi}	75.2 (2)	C7—O1—Tb1 ^{iv}	128.8 (6)
O4—Tb1—Tb1 ⁱ	102.23 (15)	Tb1—O6—H6A	127.3
O4—Tb1—Tb1 ⁱⁱⁱ	110.76 (16)	Tb1—O6—H6B	127.3
O4—Tb1—Tb1 ⁱⁱ	158.18 (15)	C9—O5—Tb1 ^v	135.9 (6)
O4—Tb1—O6	66.7 (5)	C9—O7—Tb1 ^{viii}	140.0 (6)
O3—Tb1—Tb1 ⁱⁱ	33.19 (8)	Tb1—O4—C7—O1	57.0 (12)
O3—Tb1—Tb1 ⁱⁱⁱ	86.24 (16)	Tb1—O4—C7—C3	-123.9 (7)
O3—Tb1—Tb1 ⁱ	33.19 (8)	Tb1 ^{iv} —O1—C7—O4	-61.0 (12)
O3—Tb1—O2 ⁱⁱⁱ	66.06 (16)	Tb1 ^{iv} —O1—C7—C3	119.9 (8)
O3—Tb1—O2 ^{iv}	65.84 (16)	Tb1v—O5—C9—C2	-174.1 (7)
O3—Tb1—O2	100.1 (2)	Tb1 ^v —O5—C9—O7	6.0 (16)
O3—Tb1—O4	134.07 (15)	Tb1 ^{viii} —O7—C9—C2	164.4 (7)
O3—Tb1—O1 ⁱⁱⁱ	142.44 (17)	Tb1 ^{viii} —O7—C9—O5	-15.8 (16)
Symmetry codes: (i)	-x+y+1, -x+2, z; (ii) -	-y+2, x-y+1, z; (iii) x-y+1, x, -	-z+1; (iv) y, -x+y+1, -z+1;

(v) -x+4/3, -x+y+2/3, -z+7/6; (vi) x-y+4/3, -y+5/3, -z+7/6; (vii) -x+1, -y+2, -z+1; (viii) x-y+1/3, -y+5/3, -z+7/6.

	Con	nplex 3	
Ce1—Ce1 ⁱ	4.0942 (12)	O3—Ce1—O7 ^{vi}	75.5 (4)
Ce1—Ce1 ⁱⁱ	4.1352 (11)	O4—Ce1—Ce1 ⁱⁱ	100.6 (2)
Ce1—Ce1 ⁱⁱⁱ	4.0943 (12)	O4—Ce1—Ce1i	155.8 (2)
Ce1—O2 ⁱⁱⁱ	2.455 (8)	O4—Ce1—Ce1 ⁱⁱⁱ	108.9 (2)
Ce1—O2	2.439 (8)	O4—Ce1—O1	68.3 (4)
Ce1—O2 ^{iv}	2.457 (8)	O4—Ce1—O5 ⁱⁱ	81.7 (3)
Ce1—O3	2.438 (4)	O4—Ce1—O6 ^v	134.9 (3)
Ce1—O4	2.464 (9)	O4—Ce1—O7 ^{vi}	86.6 (4)
Ce1—O1	2.644 (12)	O1-Ce1-Ce1 ⁱ	135.4 (4)
Ce1—O5 ⁱⁱ	2.493 (10)	O1—Ce1—Ce1 ⁱⁱ	135.0 (3)
Ce1—O6 ^v	2.489 (9)	O1—Ce1—Ce1 ⁱⁱⁱ	135.0 (3)
Ce1—O7 ^{vi}	2.466 (10)	O5 ⁱⁱ —Ce1—Ce1 ⁱⁱⁱ	157.5 (2)
Cel ⁱⁱⁱ —Cel—Cel ⁱⁱ	89.999 (1)	O5 ⁱⁱ —Ce1—Ce1 ⁱⁱ	68.2 (2)
Cel ⁱ —Cel—Cel ⁱⁱⁱ	60	O5 ⁱⁱ —Ce1—Ce1 ⁱ	102.3 (2)
Cel ⁱ —Cel—Cel ⁱⁱ	60.327 (10)	O5 ⁱⁱ —Ce1—O1	67.0 (4)
O2—Ce1—Ce1 ⁱⁱⁱ	85.37 (19)	O6 ^v —Ce1—Ce1 ⁱⁱ	107.9 (3)
O2—Ce1—Ce1 ⁱⁱ	32.51 (17)	O6 ^v —Ce1—Ce1 ⁱ	68.6 (3)
O2 ^{iv} —Ce1—Ce1 ⁱⁱⁱ	85.17 (18)	O6 ^v —Ce1—Ce1 ⁱⁱⁱ	105.4 (2)
O2 ⁱⁱⁱ —Ce1—Ce1 ⁱⁱⁱ	33.09 (18)	06 ^v —Ce1—O1	66.8 (5)
O2—Ce1—Ce1 ⁱ	33.34 (19)	O6 ^v —Ce1—O5 ⁱⁱ	77.5 (3)
O2 ⁱⁱⁱ —Ce1—Ce1 ⁱⁱ	84.52 (18)	O7vi—Ce1—Ce1 ⁱⁱⁱ	66.9 (3)
O2 ⁱⁱⁱ —Ce1—Ce1 ⁱ	85.17 (18)	O7 ^{vi} —Ce1—Ce1 ⁱⁱ	156.8 (3)
O2 ^{iv} —Ce1—Ce1 ⁱ	85.41 (19)	O7 ^{vi} —Ce1—Ce1 ⁱ	105.8 (3)
O2 ^{iv} —Ce1—Ce1 ⁱⁱ	32.66 (18)	O7vi—Ce1—O1	68.2 (4)
O2—Ce1—O2 ⁱⁱⁱ	97.9 (4)	O7vi—Ce1—O5 ⁱⁱ	134.9 (4)
O2 ⁱⁱⁱ —Ce1—O2 ^{iv}	64.1 (2)	O7 ^{vi} —Ce1—O6 ^v	80.7 (4)
O2—Ce1—O2 ^{iv}	64.3 (2)	Ce1—O2—Ce1 ⁱ	113.6 (3)
O2 ⁱⁱⁱ —Ce1—O4	77.9 (3)	Ce1—O2—Ce1 ⁱⁱ	115.3 (3)
O2—Ce1—O4	132.4 (3)	Cel ⁱ —O2—Cel ⁱⁱ	114.6 (3)
O2 ^{iv} —Ce1—O4	71.8 (3)	Cel ⁱ —O2—H2	103.8
O2 ⁱⁱⁱ —Ce1—O1	130.8 (4)	Cel ⁱⁱ —O2—H2	103.8
O2 ^{iv} —Ce1—O1	130.4 (4)	Ce1—O2—H2	103.8
O2—Ce1—O1	131.2 (4)	Cel ⁱⁱⁱ —O3—Cel ⁱ	114.2 (2)
O2 ^{iv} —Ce1—O5 ⁱⁱ	79.4 (3)	Cel ⁱ —O3—Cel	114.2 (2)
O2 ⁱⁱⁱ —Ce1—O5 ⁱⁱ	142.1 (3)	Cel ⁱⁱⁱ —O3—Cel	114.2 (2)
O2—Ce1—O5 ⁱⁱ	73.3 (3)	Ce1 ⁱⁱⁱ —O3—H3	104.2
O2 ⁱⁱⁱ —Ce1—O6 ^v	138.0 (3)	Ce1 ⁱ O3H3	104.2
O2 ^{iv} —Ce1—O6 ^v	140.2 (3)	Ce1—O3—H3	104.2
O2—Ce1—O6 ^v	78.2 (3)	C9—O4—Ce1	131.8 (9)
O2 ⁱⁱⁱ —Ce1—O7 ^{vi}	75.4 (3)	Ce1—O1—H1A	127.5

O2-Ce1-O7vi	138.9 (3)	Ce1—O1—H1B	128
O2 ^{iv} —Ce1—O7 ^{vi}	137.0 (3)	C9—O5—Ce1 ^{iv}	127.5 (9)
O3—Ce1—Ce1 ⁱⁱⁱ	32.90 (12)	C1O6Ce1 ^{viii}	137.3 (9)
O3—Ce1—Ce1 ⁱⁱ	85.6 (3)	C1—O7—Ce1 ^{ix}	141.2 (10)
O3—Ce1—Ce1 ⁱ	32.90 (12)	Ce1—O4—C9—O5	60 (2)
O3—Ce1—O2	65.3 (3)	Ce1—O4—C9—C6	-118.5 (13)
O3—Ce1—O2 ^{iv}	98.7 (4)	Ce1 ^{iv} —O5—C9—O4	-56.9 (19)
O3—Ce1—O2 ⁱⁱⁱ	65.1 (3)	Ce1 ^{iv} —O5—C9—C6	121.3 (13)
O3—Ce1—O4	141.7 (3)	C2-C1-O6-Ce1viii	174.4 (11)
O3—Ce1—O1	130.9 (5)	C2-C1-O7-Ce1 ^{ix}	-167.8 (12)
O3—Ce1—O5 ⁱⁱ	134.2 (2)	06-C1-07-Ce1 ^{ix}	13 (3)
O3—Ce1—O6 ^v	75.8 (3)	07-C1-06-Ce1viii	-6 (3)
Symmetry codes: (i) -y+2, x-y+1, z; (ii) x-y+1, x, -z+1; (iii) -x+y+1, -x+2, z; (iv) y, -x+y+1, -z+1; (v) -y+5/3,			
-x+4/3, z-1/6; (vi) -x+y+2/3	, y+1/3, z-1/6; (vii) -x+	1, -y+1, -z+1; (viii) -y+4/3, -x+5	/3, z+1/6; (ix) -x+y+1/3,
y-1/3, z+1/6.			

Table S3 The CIE coordinates of doped Eu_xTb_{1-x} -MOFs.

	EU/%	TB/%	CIE
	100	0	0.5574, 0.3125
	90	10	0.5468, 0.3089
	80	20	0.5417, 0.3111
	70	30	0.5590, 0.3267
	60	40	0.5760, 0.3359
EU _X TB _{1-X} -	50	50	0.5272, 0.3355
MOFS			
	40	60	0.4634, 0.3597
	30	70	0.3934, 0.4136
	20	80	0.3876, 0.4302
	10	90	0.3236, 0.4729
	0	100	0.2518, 0.5348

Fig. S1 The N_2 adsorption–desorption isotherms of complex 1.

Fig. S2 The 3D porous framework for 1 shown in the space-filling mode along b axis.

Fig. S3 The PXRD patterns of complex 1 after adsorption N_2 .

Fig. S4 The TGA curves of complexes 1-3.

Fig. S5 Energy transfer in the complexes 1 and 2.

Fig. S6 (a)The I_{394}/I_{614} value of complex 1 under the present of VB₆ and interference analytes. (b) The influence of reaction time on fluorescence intensity of complex 1.

Fig. S7 The fluorescence intensity ratio of complex 1 for detecting VB_6 after five cycles.

Fig. S8 (a) The I_{394}/I_{614} value of complex **2** under the present of VB₆ and interference analytes. (b) The influence of reaction time on fluorescence intensity of complex **2**.

Fig. S9 The fluorescence intensity ratio of complex 2 for detecting VB₆ after five cycles.

Fig. S10 (a) Linear fitting relationship of Eu_2Tb_8 -MOF between fluorescence intensity ratio I_{394}/I_{546} and VB₆ concentration. (b) The fluorescence emission spectra of Eu_2Tb_8 -MOF with the addition of VB₆ in phosphate buffer solution including 10 µL of human serum. (c) Linear fitting relationship of Eu_2Tb_8 -MOF between fluorescence intensity ratio I_{394}/I_{546} and VB₆ concentration in phosphate buffer solution including 10 µL of human serum. (d) The influence of reaction time on fluorescence intensity of Eu_2Tb_8 -MOF.

Fig. S11 The fluorescence intensity ratio of Eu₂Tb₈-MOF for detecting VB₆ after five cycles.

Fig. S12 The fluorescence color of Eu₂Tb₈-MOF under 254 nm UV-vis lamp with VB₆ concentration of 0, 0.005,

0.01, 0.25, 1, 2.5 mM.

Fig. S13 (a) The fluorescence emission spectra of complex 1 with the addition of VB₆ in phosphate buffer solution including 10 μ L of human serum. (b) Linear fitting relationship between fluorescence intensity ratio I_{394}/I_{614} and VB₆ concentration. (c) The fluorescence emission spectra of complex 2 with the addition of VB₆ in phosphate buffer solution including 20 μ L of human serum. (d) Linear fitting relationship between fluorescence intensity ratio I_{397}/I_{546} and VB₆ concentration.

Fig. S14 The PXRD patterns of complexes 1 and 2 after detection of VB_6 for 24 h and complexes 1 and 2 detecting VB_6 after five cycles.

Fig. S15 The UV-vis absorption spectra of VB₆, and the excitation spectra of complexes 1 and 2.

Fig. S16 LUMO and HOMO energy levels of H_4EBTC and three vitamins.

Fig. S17 (a) XPS spectra of complex 1, complex 1@VB₆. (b) Eu 3d for complex 1, complex 1@VB₆. (c) O 1s for complex 1, complex 1@VB₆. (d) XPS spectra of complex 2, complex 2@VB₆. (e) Tb 3d for complex 2, complex 2@VB₆. (f) O 1s for complex 2, complex 2@VB₆.

Reference

S1 X. -N. Mi, D. -F. Sheng, Y. -E. Yu, Y. -H. Wang, L. -M. Zhao, J. Lu, Y. -W. Li, D. -C. Li, J. -M. Dou, J. -G. Duan and S. -N. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 7914–7926.