Supplementary Information

$\beta\text{-}(Z)\text{-}Selective$ Alkyne Hydrosilylation by a N,O-Functionalized

NHC-based Rhodium(I) Catalyst

Miguel González-Lainez, M. Victoria Jiménez,^{*} Vincenzo Passarelli, and Jesús J. Pérez-Torrente^{*}

Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza – CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

Contents

1 NMR spectra of rhodium(I) organometallic compounds 2-6 .	S2
2 ATR-IR spectra of carbonyl compounds 4-6 .	S14
3 Hydrosilylation of phenylacetylene derivatives with $HSiMe_2Ph$ catalyzed by 6.	S 16
4 Hydrosilylation of terminal alkynes with $HSiMe_2Ph$ catalyzed by 6 at	
different reaction times.	S17
5 Isomerization β -(<i>Z</i>) \rightarrow β -(<i>E</i>) in the hydrosilylation of phenylacetylene with	
HSiMe ₂ Ph catalyzed by 6 .	S 19
6 Reaction of 6 with 20 eq. of $HSi(OEt)_3$	S 19
7 Determination of activation parameters for the hydrosilylation of 1-hexyne	
with $HSiMe_2Ph$ catalyzed by 6 in CDCl ₃ .	S20
8 Scan of the Si \cdots O coordinates en route from II \rightarrow III.	S23

1.- NMR spectra of rhodium(I) organometallic compounds 2-6.

Figure S1. ¹H NMR (C_6D_6) spectrum of [RhBr(cod)(κC -^tBuImCH₂PyCH₂OMe)] (**2**).

Figure S2. ¹H-¹H COSY (C_6D_6) of [RhBr(cod)(κC -^tBuImCH₂PyCH₂OMe)] (2).

Figure S3. ¹³C{¹H} NMR (C₆D₆) APT of [RhBr(cod)(κ C-^tBuImCH₂PyCH₂OMe)] (2).

Figure S4. ¹³C{¹H} NMR (C₆D₆) of [RhBr(cod)(κ C-^tBuImCH₂PyCH₂OMe)] (2).

Figure S5. 1 H- 13 C HSQC (C₆D₆) of [RhBr(cod)(κ C- t BuImCH₂PyCH₂OMe)] (**2**).

Figure S6. ¹H NMR (CDCl₃) spectrum of $[Rh(cod)(\kappa^2 C, N-^tBuImCH_2PyCH_2OMe)]PF_6$ (3).

Figure S7. ¹³C{¹H} NMR (C₆D₆) of [Rh(cod)($\kappa^2 C$,*N*-^tBuImCH₂PyCH₂OMe)]PF₆ (**3**).

Figure S8. $^{1}\text{H}^{-13}\text{C}$ HSQC (C₆D₆) of [Rh(cod)($\kappa^{2}C$,N- $^{t}\text{BuImCH}_{2}\text{PyCH}_{2}\text{OMe}$)]PF₆ (**3**).

Figure S9. ¹H NMR (CDCl₃) spectrum of $[Rh(CO)_2(\kappa^2 C, N-{}^{t}BuImCH_2PyCH_2OMe)]PF_6$ (4).

Figure S10. ¹H-¹H COSY NMR (CDCl₃) of $[Rh(CO)_2(\kappa^2 C, N-^{1}BuImCH_2PyCH_2OMe)]PF_6$ (4).

Figure S11. ¹³C{¹H}-APT NMR (CDCl₃) spectrum of $[Rh(CO)_2(\kappa^2 C, N-$ ¹BuImCH₂PyCH₂OMe)]PF₆ (**4**).

Figure S12. ¹H-¹³C HSQC NMR (CDCl₃) of $[Rh(CO)_2(\kappa^2 C, N-t^2 BuImCH_2PyCH_2OMe)]PF_6$ (**4**).

Figure S13. ¹H NMR (CDCl₃) spectrum of [RhBr(CO)₂(κ C-^tBuImCH₂PyCH₂OMe)] (5).

Figure S14. ¹H-¹H COSY NMR (CDCl₃) of [RhBr(CO)₂(κ C-^tBuImCH₂PyCH₂OMe)] (5).

Figure S15. ¹³C{¹H} NMR (CDCl₃) of [RhBr(CO)₂(κ C-^tBuImCH₂PyCH₂OMe)] (**5**).

Figure S16. ¹H-¹³C HSQC NMR (CDCl₃) of [RhBr(CO)₂(κ C-^tBuImCH₂PyCH₂OMe)] (5).

Figure S17. ¹H-¹³C HMBC NMR (CDCl₃) of [RhBr(CO)₂(κ C-^tBuImCH₂PyCH₂OMe)] (5).

Figure S18. ¹H NMR (CDCl₃) spectrum of [RhBr(CO)($\kappa^2 C$,*N*-^tBuImCH₂PyCH₂OMe)] (6).

Figure S19. ¹H-¹H COSY NMR (CDCl₃) of [RhBr(CO)($\kappa^2 C$,*N* -^tBuImCH₂PyCH₂OMe)] (6).

Figure S20. ¹³C{¹H} NMR (CDCl₃) of [RhBr(CO)($\kappa^2 C$, *N* -^tBuImCH₂PyCH₂OMe)] (6).

Figure S21. ¹H-¹³C HMBC NMR (CDCl₃) of [RhBr(CO)($\kappa^2 C$,*N*-^tBuImCH₂PyCH₂OMe)] (6).

Figure S22. Comparison of the ¹H NMR spectra of complexes 5 and 6 in CDCl₃.

2.- ATR-IR spectra of carbonyl compounds 4-6.

Figure S23. Terminal carbonyl region of the ATR-IR spectra of compounds 4-6 (ν (CO) in cm⁻¹).

Figure S24. ATR-IR spectrum of $[Rh(CO)_2(\kappa^2 C, N^{-t}BuImCH_2PyCH_2OMe)]PF_6$ (4).

Figure S25. ATR-IR spectrum of $[RhBr(CO)_2(\kappa C-^{t}BuImCH_2PyCH_2OMe)]$ (5).

Figure S26. ATR-IR spectrum of $[RhBr(CO)(\kappa^2 C, N-^tBuImCH_2PyCH_2OMe)]$ (6).

3.- Hydrosilylation of phenylacetylene derivatives with HSiMe₂Ph catalyzed by 6.

Figure S27. a) Reaction profile obtained from ¹H-NMR data for the hydrosilylation of phenylacetylene derivatives 4-R-C₆H₄-C \equiv CH (R = H, yellow; MeO, blue; and CF₃, green) with HSiMe₂Ph (1:1), in CDCl₃ (0.5 mL) at 333 K catalyzed by **6**. b) Hammett plot.

4.- Hydrosilylation of terminal alkynes with HSiMe₂Ph catalyzed by 6 at different reaction times.^a

R-	──H + HSil	Me₂Ph►	H		+	H R	
		– CDCl ₃ , 333 K	Ŕ	SiMe ₂ Ph H́S	iMe ₂ Ph	H SiMe	∋₂Ph
			p-q	μ. μ	Sel	u ectividad (9	(a) ^b
	Silane	Alkyne	Time	Conversion (%) ^b	β-(Z)	β -(E)	α
1			10'	57	92	5	3
2	HSiMe ₂ Ph		20'	90	92	5	3
3			30'	100	90	6	4
4		\sim	15'	95	87	7	б
5			20'	100	88	6	6
6			30'	28	2	67	31
7			6 h	92	5	55	40
8 ^c		_0	30'	64	-	40	47
9°		ll o	3 h	100	-	44	47
10			30'	57	67	21	12
11			2 h	100	67	21	12
12			30'	71	74	17	9
13			75'	91	68	24	8
14 ^d			30'	46	42	35	23
15 ^d		F ₃ C	5 h	95	57	26	17
16		N	24 h	23	43	49	8
17			1h 30'	33	74	15	11
18			6 h	96	77	15	8
19	HSiMePh ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10'	49	100	-	-
20			30'	95	100	_	_
21	HSiPh ₃	~~~·	6 h	30	100	-	_
22			24 h	87	100	-	-
23	HSiEt ₃	$\wedge \wedge$	30'	44	86	7	7
24			1 h	65	89	6	5

 Table S1. Hydrosilylation of terminal alkynes catalyzed by 6.

25			90'	96	89	6	5
26	HSiMe ₂ Et		30'	98	89	7	4
27	HSiMePh ₂	\checkmark	3 h	26	10	40	50
28			24 h	100	8	40	52
29		///	3 h	22	29	42	29
30			7 h	35	28	43	28
31			24 h	59	29	43	28
32		///	3 h	24	16	55	29
33			7 h	67	45	33	22
34		F ₃ C	24 h	59	22	51	27
35		///	3 h	33	44	34	22
36			7 h	37	19	51	31
37		<u> </u>	24 h	100	42	39	19

^a Reaction conditions: alkyne (0.11 mmol), HSiMe₂Ph (0.11 mmol) and **6** (0.0011 mmol, 1.0 mol%), in CDCl₃ (0.5 mL) at 333 K. [HSiMe₂Ph] = [1-alkyne] \approx 0.22 M. ^b Conversion, based on HSiR₃, and selectivity determined by ¹H RMN using anisole as internal standard. ^c 13% and 9% of methylacrilate. ^d Traces of 1-trifluoromethyl-4-vinylbenzene were observed.

5.- Isomerization β -(Z) $\rightarrow\beta$ -(E) in the hydrosilylation of PhC=CH with HSiMe₂Ph catalyzed by 6.

Figure S28. ¹H-NMR (CDCl₃) spectra of the hydrosilylation of PhC=CH with HSiMe₂Ph catalyzed by **6** at long reaction times. Reaction conditions: phenylacetylene (0.11 mmol), HSiMe₂Ph (0.11 mmol) and **6** (0.0011 mmol, 1 mol%) in CDCl₃ (0.5 mL) at 333 K.

6.- Reaction of 6 with 20 eq. of HSi(OEt)3

Figure S29. ¹H NMR (acetonitrile- d_3 , 300K) of the reaction of [RhBr(CO)(k²-*C*,*N*-¹BuImCH₂PyCH₂OMe)] (6) with 20 eq. of HSi(OEt)₃ at 333K for 1h.

7.- Determination of activation parameters for the hydrosilylation of 1-hexyne with HSiMe₂Ph catalyzed by 6 in CDCl₃.

Figure S30. Reaction profiles for the hydrosilylation of 1-hexyne with HSiMe₂Ph monitored by ¹H NMR at the indicated temperature. Reaction conditions: hydrosilane (0.11 mmol), alkyne (0.11 mmol) and **6** (1 mol%) in CDCl₃ (0.5 mL).

Table S2. Influence of the temperature in the hydrosilylation of 1-hexyne to β -(*Z*)-hex-1-enyldimethyl(phenyl)silane catalyzed by **6**.^{a,b}

$C_{4}H_{9} = H + HSiMe_{2}Ph \xrightarrow{6} CDCI_{3}, T \xrightarrow{H} H + C_{4}H_{9} + C_{4}H_{9} + C_{4}H_{9} + H \xrightarrow{C_{4}H_{9}} H + H \xrightarrow{C_{4}H_{9}} H C_{$							
			β-(Ζ)	β-(<i>E</i>)	α		
	T (K)	t (min)	Conversion (%) ^b _	Sele	Selectivity (%) ^b		
	I (K)	ι (ΠΠΠ)		β-(Z)	β- (<i>E</i>)	α	
1	303	15	34	71	17	12	
2		81	92	87	8	5	
3	313	15	43	77	14	9	
4		58	88	86	8	6	
5	318	15	53	85	8	7	
6		50	100	87	7	6	
7	323	15	77	84	9	7	
8		44	100	87	7	6	
9	333	15	86	89	7	4	
10		30	100	90	6	4	

^a Reaction conditions: 1-hexyne (0.10 mmol), $HSiMe_2Ph$ (0.10 mmol) and **6** (0.001 mmol, 1.0 mol%), in CDCl₃ (0.5 mL). ^b Conversion, based on $HSiMe_2Ph$, and selectivity determined by ¹H NMR.

The Gibbs free energy barrier (ΔG^{\ddagger}) and the activation parameters, ΔH^{\ddagger} and ΔS^{\ddagger} , were determined from a linear least squares fit of the temperature dependence of the initial turnover frequency determined at 15 min reaction time, TOF_o (s⁻¹), to the logarithmic form of the Eyring equation.

Free energy equation:

$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - T \Delta S^{\ddagger}$$

Erying equation:

$$k = K \frac{k_b T}{h} e^{\frac{-\Delta G^{\ddagger}}{RT}} \qquad K = 1$$
$$\ln\left(\frac{k}{T}\right) = -\frac{\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \ln\left(\frac{k_b}{h}\right) + \frac{\Delta S^{\ddagger}}{R}$$

Т	1/T	k (s ⁻¹)	ln (k/T)
303	0,003299	0,026667	-9,338074
313	0,003193	0,036667	-9,052090
318	0,003143	0,050000	-8,757784
323	0,003095	0,072222	-8,405660
333	0,003002	0,085556	-8,266732

where T is temperature in Kelvin, k_b is the Boltzmann's constant and h is Planck's constant.

Figure S31. Eyring plot for the hydrosilylation of 1-hexyne with HSiMe₂Ph catalyzed by **6** in CDCl₃. The line represents the least squares fit to the data point.

Slope: -3906 Intercept: 3.53 R²: 0.9479; ΔH^{\ddagger} (kcal mol⁻¹): 7.8 ± 1.0; ΔS^{\ddagger} (J/K·mol): -40.2 ± 3.3 ΔG^{\ddagger} (kJ mol⁻¹): 19.8 ± 2.0 at 298 K 8.- Scan of the Si…O coordinates en route from II \rightarrow III.

Figure S32. Energy (E, kcal·mol⁻¹) *vs*. Si····O distance (d_{sio}, Å) for **II** \rightarrow **III** (B97D3, def2svp, CPCM/CHCl₃, 298 K, 1 atm).