Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary information

A dual Z-scheme heterojunction Cu-CuTCPP/Cu₂O/CoAl-LDH for photocatalytic

CO₂ reduction to C1 and C2 products

Cheng Xia ^a, Rui-tang Guo ^{a, b, *}, Zhe-xu Bi ^a, Zhen-rui Zhang ^a, Chu-fan Li ^a, Wei-guo Pan ^{a, b}

a College of Energy and Mechanical Engineering, Shanghai University of Electric

Power, Shanghai, China

b Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, China

Corresponding author: Rui-tang Guo

Email: grta@sohu.com

Gas chromatography

The gas path is consisted of high purity Ar (99.999%), high purity H_2 (99.999%), and high purity air (99.999%). During the experiment, a mass flowmeter was used to control the gas flow, and steel pipe was applied to connect the gas path. GC-2014C gas chromatography of Shimadzu company was used to analyze the composition of the gas produced in the process of photocatalytic reduction of CO_2 . Figure S1 displays the system flowchart. In the whole analysis process, high-purity Ar was used as the carrier gas, CO and CH_4 were detected in FID1, C2 products such as C_2H_2 , C_2H_4 and C_2H_6 were measured in FID2, and H_2 and O_2 in gas phase products were analyzed by TCD detector.

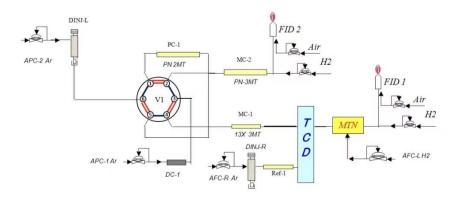


Fig. S1 The flow diagram of the online analysis system in photocatalytic reduction of CO₂.

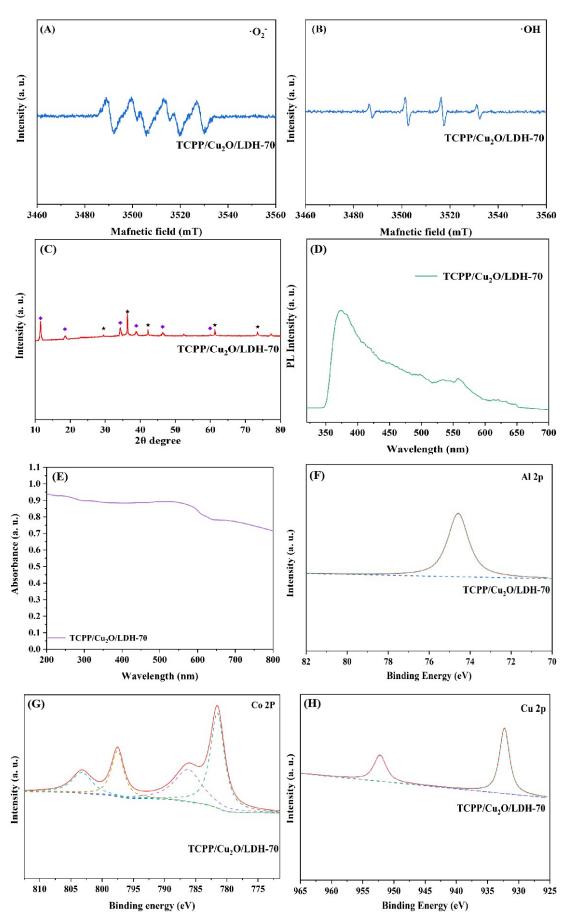


Fig. S2 EPR (A and B), XRD (C), PL (D), UV-vis DRS (E), and XPS (F, G, and H) plots of

 $TCPP/Cu_2O/CoAl\text{-}LDH\text{-}70$ after cyclic testing.