Electronic Supporting Information

Liberation of carbon monoxide from formic acid mediated by molybdenum oxyanions.

Howard Z. Ma,^a Allan J. Canty ^b and Richard A. J. O'Hair *^a

(a) School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. Fax: (+) 61 3 9347 8124; E-mail: rohair@unimelb.edu.au

(b) School of Natural Sciences – Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.

Crystallography

Intensity data for (TBA)₂[Mo₂O₇] was collected on a Rigaku XtalLAB Synergy at 100.0(1) K. The temperature was maintained using an Oxford Cryostream cooling device. The structures were solved by direct methods and difference Fourier synthesis.¹ Thermal ellipsoid plot were generated using the program Mercury ² integrated within the WINGX ³ suite of programs.

Fig. S1 Solid-state structure of (TBA)₂[Mo₂O₇]. This structure is similar to that reported in ref 20.

Crystal data for $(TBA)_2[Mo_2O_7]$. $C_{32}H_{72}Mo_2N_2O$, M = 788.79, T = 100.0 K, $\lambda = 0.71073$ Å, Monoclinic, space group I2/a, a = 17.1743(3)) b = 13.7314(2), c = 18.0806(3) Å, $\beta = 114.029(2)^{\circ}$ V = 3894.38(12) Å³, Z = 4, Z' = 0.5, $D_c = 1.345$ mg M⁻³ μ (Mo-K α) 0.686 mm⁻¹, F(000) = 1672 crystal size 0.41 x 0.38 x 0.12 mm³, 30977 reflections measured $\theta_{max} = 41.04^{\circ}$, 12327 independent reflections [R(int) = 0.029], the final R was 0.0295 [I > 2s(I), 10255 data] and wR(F²) was 0.0702 (all data), GOF 1.061. CCDC deposit code 2291910.

Table ST. Selected distances (A), angles () and dinedral angles () for (TBA) ₂ [ivio ₂ O ₇]					
1.7321(7)	O(2)-Mo(1)	1.7357(8)			
1.8962(3)	O(3)-Mo(1)	1.9862(3)			
1.7270(7)					
148.56(6)	O(4)-Mo(1)-O(1)	108.62(4)			
110.35(4)	O(1)-Mo(1)-O(2)	108.89(4)			
109.79(4)	O(1)-Mo(1)-O(3)	109.52(3)			
109.65(3)					
Mo(1)#1-O(3)-Mo(1)-O(4)		7.43(3)			
Mo(1)#1-O(3)-Mo(1)-O(1)		126.61(3)			
Mo(1)#1-O(3)-Mo(1)-O(2)		-113.96(3)			
	1.7321(7) 1.8962(3) 1.7270(7) 148.56(6) 110.35(4) 109.79(4) 109.65(3) .)	1.7321(7) O(2)-Mo(1) 1.8962(3) O(3)-Mo(1) 1.7270(7) 148.56(6) 110.35(4) O(1)-Mo(1)-O(2) 109.79(4) O(1)-Mo(1)-O(3) 109.65(3) 7.43(3)) 126.61(3) 2) -113.96(3)			

Table S1: Selected distances (Å), angles (°) and dihedral angles (°) for (TBA)₂[Mo₂O₇]

Symmetry transformations used to generate equivalent atoms: (#1 -x+1/2,y,-z+1)

Mass spectrometry

Fig. S2 (A) Theoretical isotope pattern of $[MOO_3(OH)]^-$; (B) Orbitrap experimental isotope pattern of the ion assigned as $[MOO_3(OH)]^-$; (C) Mass selection of a single peak at m/z 163 in the ion trap which corresponds to $[{}^{98}MOO_3(OH)]^-$; (D) Theoretical isotope pattern of $[Mo_2O_7]^{2-}$; (E) Orbitrap experimental isotope pattern of the ion assigned as $[Mo_2O_7]^{2-}$; Mass selection of a single peak at m/z 152 in the ion trap which corresponds to $[{}^{192}MO_2O_7]^{2-}$; Mass selection of a single peak at m/z 152 in the ion trap which corresponds to $[{}^{(192)}MO_2O_7]^{2-}$.

Fig. S3 Negative ion mode ion trap ESI-MS of $(TBA)_2[Mo_2O_7]$ in acetonitrile showing the formation of several molybdate oxyanions. α_x ions: $[(MoO_3)_1(OH)]^-$ (*m*/*z* 163); $[(MoO_3)_2(OH)]^-$ (*m*/*z* 305); $[(MoO_3)_3(OH)]^-$ (*m*/*z* 449); $[(MoO_3)_4(OH)]^-$ (*m*/*z* 593). β_n ions: $[(MoO_3)_2O]^{2-}$ (*m*/*z* 152); $[(MoO_3)_3O]^{2-}$ (*m*/*z* 24); $[(MoO_3)_4O]^{2-}$ (*m*/*z* 297); $[(MoO_3)_5O]^{2-}$ (*m*/*z* 368); $[(MoO_3)_6O]^{2-}$ (*m*/*z* 440). * ions: $[\{(MoO_3)_2O\}^{2-}$ (TBA)⁺]⁻ (*m*/*z* 546); $[\{(MoO_3)_3O\}^{2-}(TBA)^+]^-$ (*m*/*z* 690); $[\{(MoO_3)_4O\}^{2-}(TBA)^+]^-$ (*m*/*z* 834). TBA = tetrabutylammonium, z represents the charge state of the anion.

Fig. S4 Multistage mass spectrometry (MSⁿ) experiments demonstrating a two-step gas-phase catalytic cycle for the decomposition of formic acid (Scheme 1D). Ion-molecule reactions (IMR) of $[MoO_3(OH)]^-$ (*m/z* 163) with HCO₂H were obtained at the given activation times, collision-induced dissociation (CID) experiments on $[MoO_3(O_2CH)]^-$ (*m/z* 191) were obtained using a Q value of 0.25 and an activation time of 10 ms with the given Normalised Collision Energies (NCE): (A) MS² IMR (at 1300 ms); (B) MS³ CID (NCE = 13%); (C) MS⁴ IMR (at 1200 ms); (D) MS⁵ CID (NCE = 12%); (E) MS⁶ IMR (at 1200 ms); (F) MS⁷ CID (NCE = 12%); (G) MS⁸ IMR (at 1200 ms); (H) MS⁹ CID (NCE = 12%). An asterisk (*) denotes the mass selected precursor ion.

Fig. S5 MS⁴ IMR experiment of $[HMoO_3]^-$ (*m*/*z* 147) with HCO₂H ([HCO₂H] ion trap = 9.2 × 10⁹ molecules cm⁻³) at an activation time of 10,000 ms. An asterisk (*) denotes the mass selected precursor ion.

Fig. S6 MS² IMR on $[Mo_2O_7]^{2-}$ (*m*/*z* 152) with HCO₂H showing the formation of the primary product ion $[Mo_2O_6(OH)]^-$ (*m*/*z* 305) and the secondary product ion $[Mo_2O_6(O_2CH)]^-$ (*m*/*z* 333). The formate anion HCO₂⁻ (*m*/*z* 45), which is the other product ion formed upon protonation of $[Mo_2O_7]^{2-}$ by HCO₂H, is not experimentally observed due to the low mass cut-off of the ion trap.

Fig. S7 Multistage mass spectrometry (MSⁿ) experiments on $[Mo_2O_6(O_2CH)]^-$ demonstrating a two-step gas-phase catalytic cycle for the selective decomposition of formic acid. Ion-molecule reactions (IMR) of $[Mo_2O_6(OH)]^-$ (*m/z* 305) with HCO₂H were obtained at the given activation times, collision-induced dissociation (CID) experiments on $[Mo_2O_6(O_2CH)]^-$ (*m/z* 333) were obtained using a Q value of 0.25 and an activation time of 10 ms with the given Normalised Collision Energies (NCE): (A) MS³ IMR (at 200 ms); (B) MS⁴ CID (NCE = 8%); (C) MS⁵ IMR (at 200 ms); (D) MS⁶ CID (NCE = 8%). An asterisk (*) denotes the mass selected precursor ion.

Fig. S8 MS⁴ CID experiment of $[Mo_2O_6(O_2CH)]^-$ (m/z 333) illustrating decarbonylation, to produce $[Mo_2O_6(OH)]^-$ (m/z 305) as the major product ion, is preferred over decarboxylation to produce $[HMo_2O_6]^-$ (m/z 289) as a minor product ion. Spectrum obtained using a Q value of 0.25, an activation time of 10 ms and at an NCE of 8%. An asterisk (*) denotes the mass selected precursor ion.

Fig. S9 Multistage mass spectrometry (MSⁿ) experiments on $[Mo_3O_9(O_2CH)]^-$ demonstrating a two-step gas-phase catalytic cycle for the decomposition of formic acid. (A) MS² IMR of $[Mo_3O_9(OH)]^-$ (*m/z* 449) with HCO₂H at an activation time of 300 ms; (B) MS³ CID of $[Mo_3O_9(O_2CH)]^-$ (*m/z* 477) obtained using an activation Q of 0.25, an activation time of 10 ms and a Normalised Collision Energy (NCE) of 8.5%; (C) MS⁴ IMR of $[Mo_3O_9(OH)]^-$ (*m/z* 449) with HCO₂H at an activation time of 200 ms; (D) MS⁴ IMR of $[HMo_3O_9]^-$ (*m/z* 433) with HCO₂H at an activation time of 100 ms. An asterisk (*) denotes the mass selected precursor ion.

Fig. S10 Multistage mass spectrometry (MSⁿ) experiments on $[Mo_4O_{12}(O_2CH)]^-$ demonstrating a twostep gas-phase catalytic cycle for the decomposition of formic acid. (A) MS² IMR of $[Mo_4O_{12}(OH)]^-$ (*m/z* 592) with HCO₂H at an activation time of 5000 ms; (B) MS³ CID of $[Mo_4O_{12}(O_2CH)]^-$ (*m/z* 620) obtained using an activation Q of 0.25, an activation time of 10 ms and a Normalised Collision Energy (NCE) of 7.5%; (C) MS⁴ IMR of $[Mo_4O_{12}(OH)]^-$ (*m/z* 592) with HCO₂H at an activation time of 5000 ms; (D) MS⁴ IMR of $[HMo_4O_{12}]^-$ (*m/z* 576) with HCO₂H at an activation time of 30 ms. An asterisk (*) denotes the mass selected precursor ion.

Fig. S11 Multistage mass spectrometry (MSⁿ) experiments on ¹⁸O-labelled molybdate anions. Ion-molecule reactions (IMR) of [¹⁰⁰Mo^{18/16}O₃(^{18/16}OH)]⁻ with HCO₂H were obtained at the given activation times, collision-induced dissociation (CID) experiments on [¹⁰⁰Mo^{18/16}O₃(O₂CH)]⁻ were obtained using a Q value of 0.25 and an activation time of 10 ms with the given Normalised Collision Energies (NCE): (A) MS² IMR on [¹⁰⁰Mo^{18/0}O₃(¹⁸OH)]⁻ (*m/z* 173) at 500 ms; (B) MS³ CID of [¹⁰⁰Mo¹⁸O₃(O₂CH)]⁻ (*m/z* 199) (NCE = 16%). (Δ) denotes a secondary product ion corresponding to [¹⁰⁰Mo¹⁸O₃(O₂CH)]⁻ (*m/z* 197); (C) MS⁴ IMR on ¹⁸O/¹⁶O scrambled [¹⁰⁰Mo^{18/16}O₃(^{18/16}OH)]⁻ (*m/z* 171) at 400 ms. (Λ) corresponds to [¹⁰⁰Mo^{18/16}O₃(^{18/16}OH)]⁻ (*m/z* 199); (D) MS⁵ CID of [¹⁰⁰MoO¹⁸O₂(O₂CH)]⁻ (*m/z* 197); (C) MS⁶ IMR on corresponding to [¹⁰⁰MoO¹⁸O₃(O₂CH)]⁻ (*m/z* 199); (D) MS⁵ CID of [¹⁰⁰MoO¹⁸O₂(O₂CH)]⁻ (*m/z* 197); (C) MS⁶ IMR on corresponding to [¹⁰⁰MoO¹⁸O₂(O₂CH)]⁻ (*m/z* 197); (F) MS⁷ CID of [¹⁰⁰MoO₂¹⁸O₁(O₂CH)]⁻ (*m/z* 195); (E) MS⁶ IMR on corresponding to [¹⁰⁰MoO₂¹⁸O₁(O₂CH)]⁻ (*m/z* 197); (F) MS⁷ CID of [¹⁰⁰MoO₃(O₂CH)]⁻ (*m/z* 193); (G) MS⁷ IMR on [¹⁰⁰Mo^{18/16}O₃(^{18/16}OH)]⁻ (*m/z* 167) at 400 ms. (Ω) corresponds to [¹⁰⁰MoO₂¹⁸O₁(O₂CH)]⁻ (*m/z* 193); (G) MS⁷ IMR on [¹⁰⁰Mo^{18/16}O₃(^{18/16}OH)]⁻ (*m/z* 167) at 400 ms. (Ω) corresponds to [¹⁰⁰MoO₂¹⁸O₁(O₂CH)]⁻ (*m/z* 193); (G) MS⁷ IMR on [¹⁰⁰MoO³(O₂CH)]⁻ (*m/z* 193) (NCE = 16%). An asterisk (*) denotes the mass selected precursor ion.

Equations associated with sequential ¹⁸O/¹⁶O scrambling found in Fig. S11.

Fig. S11D:

	$ \begin{array}{ll} [^{100}\text{MoO}^{18}\text{O}_2(\text{O}_2\text{CH})]^- & \rightarrow & [^{100}\text{MoO}^{18}\text{O}_2(\text{OH})]^- + \text{CO} \\ \textbf{2(}^{18}\text{O}_2\text{)}, \ m/z \ 197 & \textbf{1(}^{18}\text{O}_2\text{)}, \ m/z \ 169 \end{array} $	(S1)
	$\begin{array}{ll} [^{100}\text{MoO}^{18}\text{O}_2(\text{O}_2\text{CH})]^- & \rightarrow & [^{100}\text{Mo}^{18}\text{O}_3(\text{H})]^- + \text{CO}_2 \\ \textbf{2(1^8O_2), } m/z \ 197 & \textbf{3(1^8O_2), } m/z \ 153 \end{array}$	(S2)
Fig. S11E:		
	$ \begin{array}{ll} [^{100}\text{MoO}^{18}\text{O}_2(\text{OH})]^- + \text{HCO}_2\text{H} & \rightarrow & [^{100}\text{MoO}^{18}\text{O}_2(\text{O}_2\text{CH})]^- + \text{H}_2\text{O} \\ \textbf{1(}^{18}\text{O}_2\text{)}, \ m/z \ 169 & \textbf{2(}^{18}\text{O}_2\text{)}, \ m/z \ 197 \end{array} $	(S3a)
	$ \begin{array}{ll} \label{eq:constraint} [^{100}\text{MoO}_2^{18}\text{O}(^{18}\text{OH})]^- + \text{HCO}_2\text{H} & \rightarrow & [^{100}\text{MoO}_2^{18}\text{O}(\text{O}_2\text{CH})]^- + \text{H}_2^{18}\text{O} \\ \textbf{1(}^{18}\text{O}_2\text{)'}, \ m/z \ 169 & \textbf{2(}^{18}\text{O}_1\text{)}, \ m/z \ 195 \end{array} $	(S3b)
Fig. S11F:		
	$ \begin{array}{ll} [^{100}\text{MoO}_2^{18}\text{O}(\text{O}_2\text{CH})]^- & \rightarrow & [^{100}\text{MoO}^{18}\text{O}_2(\text{OH})]^- + \text{CO} \\ \textbf{2(}^{18}\text{O}_1\text{)}, \ m/z \ 195 & \textbf{1(}^{18}\text{O}_1\text{)}, \ m/z \ 167 \end{array} $	(S4)
	$\begin{array}{ll} [^{100}\text{MoO}_2^{18}\text{O}(\text{O}_2\text{CH})]^- & \rightarrow & [^{100}\text{MoO}_2^{18}\text{O}(\text{H})]^- + \text{CO}_2 \\ \textbf{2(1^{18}O_1), } m/z \ 195 & \textbf{3(1^{18}O_1), } m/z \ 151 \end{array}$	(S5)
Fig. S11G:		
	$ \begin{array}{rcl} [{}^{100}\text{MoO}_2{}^{18}\text{O}(\text{OH})]^- + \text{HCO}_2\text{H} & \rightarrow & [{}^{100}\text{MoO}_2{}^{18}\text{O}(\text{O}_2\text{CH})]^- + \text{H}_2\text{O} \\ \textbf{1(}{}^{18}\textbf{O}_1\text{)}, \ m/z \ 167 & \textbf{2(}{}^{18}\textbf{O}_1\text{)}, \ m/z \ 195 \end{array} $	(S6a)
	$ \begin{bmatrix} 1^{100}MoO_3(^{18}OH) \end{bmatrix}^- + HCO_2H \rightarrow \begin{bmatrix} 1^{100}MoO_3(O_2CH) \end{bmatrix}^- + H_2^{18}O \\ 1(^{18}O_1)', m/z \ 167 \qquad 2, m/z \ 193 $	(S6b)

Fig. S11H: (note: same as eqs 5 and 6, but with different Mo isotope).

[¹⁰⁰ MoO ₃ (O₂CH)] [−] 2 , <i>m</i> /z 193	→ [¹⁰⁰ MoO ₃ (OH)] ⁻ + CO 1, m/z 165	(S7)
[¹⁰⁰ MoO ₃ (O₂CH)] ⁻ 2 , <i>m/z</i> 193	$\rightarrow [^{100}MoO_3(H)]^- + CO_2$ 3, m/z 149	(S8)

Fig. S12 DFT calculated energy diagrams relevant to the ¹⁸O/¹⁶O scrambling pathways: (A) intramolecular proton transfer pathway (eq. 17); (B) intermolecular proton transfer pathway (eq. 18). The relative enthalpies (ΔH^0 (0 K) are given in kcal mol⁻¹ and are calculated at the ω B97M-D3(BJ)/def2-QZVPP// ω B97XD/def2-TZVP level of theory.

Fig. S13 Kinetic plots for the multistage mass spectrometry ion-molecule reaction experiments (MSⁿ IMR) on $[(MoO_3)_x(OD)]^-$ (x = 1 - 2) with d_1 -formic acid (DCO₂H) ([DCO₂H] ion trap = 3.6×10^{10} molecule cm⁻³). (A) Kinetic curve for the MS⁴ IMR of $[MoO_3(OD)]^-$ (1_D , *m/z* 164) showing depletion of 1_D (black squares, closed) and product ion formation *via* dehydration (2_D , red circles, closed) and H/D exchange (1, blue triangles, closed); (B) Normalised branching ratios for the product ions 2_D and 1 observed in (A); (C) Kinetic curve for the MS⁵ IMR of $[Mo_2O_6(OD)]^-$ (4_D , *m/z* 306) showing depletion of 4_D (black squares, open) and product ion formation *via* dehydration (5_D , red circles, open) and H/D exchange (4, blue triangles, open); (D) Normalised branching ratios for the product ions 5_D and 4 observed in (C). Each point represents the intensity of the ion peaks as a proportion of the total product ion intensity at various activation times (ms).

Table S2: Benchmarking of various levels of theory to best reproduce the energies for decomposition of formic acid *via* dehydrogenation ($H_2 + CO_2$) and decarbonylation ($H_2O + CO$). Standard heats of formation obtained from NIST Chemistry WebBook. All relative enthalpy (ΔH) values are given in kcal mol⁻¹.

	Dehydrogenation (H ₂ + CO ₂)	Decarbonylation (H ₂ O + CO)
Standard heats of formation	-3.5	6.3
ωB97XD/def2-TZVPP	-3.4	11.7
ωB97M-D3(BJ)/def2- QZVPP//ωB97XD/def2-TZVPP	-2.8	6.8
PWPB95-D3(BJ)/def2- QZVPP//ωB97XD/def2-TZVPP	-4.9	9.4
DSD-PBEP86-D3(BJ)/def2- QZVPP//ωB97XD/def2-TZVPP	-4.3	9.3

Discussion on alternative mechanisms for reaction (4) involving protonation of an oxo ligand.

Proton transfer from formic acid to the oxo- ligand of $[MoO_3(OH)]^-$, **1**, proceeds *via* **TS1-15a** (Fig. S14). Following the imaginary mode in one direction gives the five-coordinate complex $[(HCO_2)Mo(O)_2(OH)_2]^-$, **15a**, where the formate, HCO_2^- , is bound to the Mo(VI) center. Following the imaginary mode in the other direction shows the formation of an initial ion-molecule complex, **1.FA'**, where the acidic proton of formic acid is hydrogen bonding to the oxo- ligand to be protonated. We have not been able to optimize the structure of **1.FA'** as an energy minimum however linear potential energy surface (PES) scans (Fig. S16) indicate its formation as formic acid, HCO_2H , and $[MoO_3(OH)]^-$, **1**, come together in an ion-molecule reaction. The estimated activation barrier for the proton transfer in **TS1-15a** is $\Delta H^{0\ddagger} +7.5$ kcal mol⁻¹. Compared to protonation of the hydroxo- ligand (Fig. 5), a similar activation barrier is observed for **TS1-2** of $\Delta H^{0\ddagger} +7.7$ kcal mol⁻¹. However, we note that the overall ΔH^0 of **TS1-15a** (-12.2 kcal mol⁻¹) is lower than that of **TS1-2** (-8.2 kcal mol⁻¹).

Upon formation of the five-coordinate $[(HCO_2)Mo(O)_2(OH)_2]^2$, **15a**, elimination of water can proceed *via* several similar pathways to give $[MoO_3(O_2CH)]^2$, **2**, as observed in the MS-IMR experiments. These pathways are summarized in Fig. S14-S15 and described briefly here.

Fig. S14 DFT calculated energy surface for the ion-molecule reaction of $[MoO_3(OH)]^-$ with HCO_2H . Protonation at an oxo- ligand followed by the elimination of water *via* intramolecular deprotonation. Elimination of water from equatorial position (black). Rearrangement of hydroxide ligands (blue) followed by elimination of water from axial position (gray). The relative enthalpies ΔH^0 (0 K) are given in kcal mol⁻¹ and are calculated at the ω B97M-D3(BJ)/def2-QZVPP// ω B97XD/def2-TZVPP level of theory.

The most energetically favorable pathway found occurs through an equatorial displacement of H₂O from **15a** through **TS15a-2a** ($\Delta H^0 = -0.5$ kcal mol⁻¹). Deprotonation of the hydroxide in the axial position of **15a** and attack of the equatorial hydroxide **TS15a-12a** ($\Delta H^{0\ddagger} = +16.9$ kcal mol⁻¹) results in the formation of H₂O in the hydrogen bonded ion-molecule complex [MoO₃(O₂CH).H₂O]⁻, **2a.H₂O**, akin to what was observed in Fig. 5. Removal of H₂O results in **2a**. Alternatively, the hydroxide ligands in **15a** can undergo a rearrangement *via* **TS15a** to give **15a'** where the hydroxide ligands are set up to undergo water elimination from an axial position (**TS15a'-2a'**). This gives the ion-molecule complex **2a'.H₂O** which is an isomer of **2a.H₂O** where the H₂O is bound to **2a** in a different position. We note that the difference in energies between **2a.H₂O** and **2a'.H₂O** are minor. The key transition state barrier for this channel is *ca*. 5.2 kcal mol⁻¹ higher in energy than elimination of H₂O *via* equatorial intramolecular deprotonation.

Fig. S15 DFT calculated energy surface for the ion-molecule reaction of $[MoO_3(OH)]^-$ with HCO_2H . Protonation at an oxo- ligand followed by the elimination of water *via* intramolecular deprotonation. The relative enthalpies ΔH^0 (0 K) are given in kcal mol⁻¹ and are calculated at the ω B97M-D3(BJ)/def2-QZVPP// ω B97XD/def2-TZVPP level of theory.

Fig. S15 summarizes several pathways possible for the elimination of water *via* intramolecular deprotonation to give the conformer [MoO₃(O₂CH)]⁻, **2b**. These pathways mirror those presented in Fig. S14 and as such will be discussed in lesser detail. However, all appear to connect to **15a** as a key intermediate that is initially formed in the IMR with HCO₂H. A conformation change of the formate ligand *via* **TS15a**-15b ($\Delta H^{0^{\pm}} = +2.2$ kcal mol⁻¹) gives **15b** where the C1-proton of the formate ligand is now hydrogen bonded to one of the oxo- ligands. Elimination water from the equatorial position *via* intramolecular deprotonation occurs through **TS15b**-2b to give **2b**.H₂**O**. We have not been able to locate an optimized structure for **TS15b**-2b and have estimated the relative ΔH^0 based on the linear PES scan shown below (Fig. S17). Removal of H₂O from **2b**.H₂O gives **2b**. Alternatively, the hydroxide ligands in **15a** can undergo a rearrangement first, *via* **TS15a** to give **15a'**, prior to the conformational change of the formate ligand resulting in **15b'** where now the C1-proton of the formate ligand is hydrogen bonding to one of the hydroxo- ligands. Water is then eliminated from the axial position of **15b'** to give **2b'**.H₂O.

Whilst the key transition states found for the elimination of water only differ by a few kcal mol⁻¹, only the pathway found occurring through **TS15a-2a** is below the 'zero' energy. Moreover, this remains greater than the key transition state barrier **TS1-2** observed in Fig. 5 for protonation of the coordinated hydroxide by formic acid and elimination of H_2O . So while the initial protonation of an oxo-ligand may be lower in energy, the subsequent rearrangements required prior to elimination from **15a** presents a significant barriers.

Fig. S16 Linear potential energy surface (PES) scan along Mo-O bond (increasing). Structure "1" corresponds to **15a**' (Fig. S14); Structure "3" corresponds to **15a** (Fig. S14); Structure "7" corresponds to **TS1-15a** (Fig. S14); Structure "30" corresponds to **1.FA**' (Fig. S14).

Fig. S17 Linear potential energy surface (PES) scan along O-H bond (decreasing) showing the elimination of water from equatorial intramolecular deprotonation to give $2b.H_2O$ (Fig. S15). Structure "1" corresponds to **15b** (Fig. S15); Structure "14" corresponds to **TS15b-2b** (Fig. S15); Structure "18" corresponds to $2b.H_2O$ (Fig. S15).

Fig. S18 Linear potential energy surface (PES) scan along O-O bond (increasing). Structure "1" corresponds to **2a.H₂O** (Fig. 5 and S14).

Fig. S19 Linear potential energy surface (PES) scan along H-C bond (increasing). Structure "1" corresponds to 1.CO (Fig. 5).

Fig. S20 Linear potential energy surface (PES) scan along O-C bond (increasing). Structure "1" corresponds to **3a.CO**₂ (Fig. 5).

Fig. S21 DFT calculated energy surface for the reaction between $[MoO_2(OH)]^-$, **3b**, and HCO_2H . The relative enthalpies (ΔH^0 (0 K) are given in kcal mol⁻¹ and are calculated at the ω B97M-D3(BJ)/def2-QZVPP// ω B97XD/def2-TZVP level of theory.

Fig. S22 Linear potential energy surface (PES) scan along the O(formate)-Mo bond (decreasing). Structure "1" corresponds to **4.FA** (Fig. 6); Structure "23" corresponds to **4-5a** (Fig. 6).

Fig. S23 Structures of transition states showing vectors associated with imaginary frequencies. Cartesian coordinates for each structure can be found in the associated xyz file.

Example of DSD-PBEP86-D3(BJ) input for ORCA5.0.3

*xyzfile 0 1 struc.xyz ! B2PLYP D3BJ RIJK def2-QZVPP def2-QZVPP/C def2/JK TIGHTSCF PAL8 %method FrozenCore FC ELECTRONS Exchange x_PBE Correlation c_P86 LDAOpt C VWN5 ScalHFX 0.69 ScalDFX 0.31 ScalGGAC 0.44 ScalLDAC 0.44 ScalMP2C 1.00 end %method D3S6 0.48 D3A1 0.0 D3S8 0.0 D3A2 5.6 end %mp2 RI on DoSCS True Ps 0.52 Pt 0.22

Example of PWPB95-D3(BJ) input for ORCA5.0.3

```
! RIJK RI-PWPB95 D3BJ def2-QZVPP def2/JK def2-QZVPP/C TIGHTSCF PAL4
*xyzfile 0 1 struc.xyz
```

References

end

1. G. Sheldrick, Acta Crystallogr. Section C, 2015, 71, 3-8.

C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, *J. Appl. Cryst.* 2008, *41*, 466–470.
 Farrugia, L. J.; *J. Appl. Cryst.* 1999, *32*, 837-838.