Electronic Supporting Information

Liberation of carbon monoxide from formic acid mediated by molybdenum oxyanions.

(a) School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. Fax:
(+) 6139347 8124; E-mail: rohair@unimelb.edu.au
(b) School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.

Crystallography

Intensity data for $(\mathrm{TBA})_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]$ was collected on a Rigaku XtalLAB Synergy at 100.0(1) K. The temperature was maintained using an Oxford Cryostream cooling device. The structures were solved by direct methods and difference Fourier synthesis. ${ }^{1}$ Thermal ellipsoid plot were generated using the program Mercury ${ }^{2}$ integrated within the WINGX ${ }^{3}$ suite of programs.

Fig. S1 Solid-state structure of $(\mathrm{TBA})_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]$. This structure is similar to that reported in ref 20.

Crystal data for $(\mathrm{TBA})_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right] . \mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Mo}_{2} \mathrm{~N}_{2} \mathrm{O}, M=788.79, T=100.0 \mathrm{~K}, \lambda=0.71073 \AA$, Monoclinic, space group I2/a, $a=17.1743(3)) b=13.7314(2), c=18.0806(3) A, \beta=$ $114.029(2)^{\circ} \quad V=3894.38(12) \AA^{3}, Z=4, Z^{\prime}=0.5, D_{c}=1.345 \mathrm{mg} \mathrm{M}^{-3} \mu(M o-K \alpha) 0.686 \mathrm{~mm}^{-1}$, $F(000)=1672$ crystal size $0.41 \times 0.38 \times 0.12 \mathrm{~mm}^{3}, 30977$ reflections measured $\theta_{\max }=41.04^{\circ}$,

12327 independent reflections $[R($ int $)=0.029]$, the final R was 0.0295 [$1>2 s(I), 10255$ data] and $w R\left(\mathrm{~F}^{2}\right)$ was 0.0702 (all data), GOF 1.061. CCDC deposit code 2291910.

Table S1: Selected distances (\AA), angles $\left({ }^{\circ}\right)$ and dihedral angles $\left({ }^{\circ}\right)$ for $(\mathrm{TBA})_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]$

$\mathrm{O}(1)-\mathrm{Mo}(1)$	$1.7321(7)$	$\mathrm{O}(2)-\mathrm{Mo}(1)$	$1.7357(8)$
$\mathrm{O}(3)-\mathrm{Mo}(1) \# 1$	$1.8962(3)$	$\mathrm{O}(3)-\mathrm{Mo}(1)$	$1.9862(3)$
$\mathrm{O}(4)-\mathrm{Mo}(1)$	$1.7270(7)$		
$\mathrm{Mo}(1) \# 1-\mathrm{O}(3)-\mathrm{Mo}(1)$	$148.56(6)$	$\mathrm{O}(4)-\mathrm{Mo}(1)-\mathrm{O}(1)$	$108.62(4)$
$\mathrm{O}(4)-\mathrm{Mo}(1)-\mathrm{O}(2)$	$110.35(4)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(2)$	$108.89(4)$
$\mathrm{O}(4)-\mathrm{Mo}(1)-\mathrm{O}(3)$	$109.79(4)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{O}(3)$	$109.52(3)$
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(3)$	$109.65(3)$		
$\mathrm{Mo}(1) \# 1-\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(4)$	$7.43(3)$		
$\mathrm{Mo}(1) \# 1-\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(1)$	$126.61(3)$		
$\mathrm{Mo}(1) \# 1-\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(2)$	$-113.96(3)$		

Symmetry transformations used to generate equivalent atoms: (\#1-x+1/2,y,-z+1)

Mass spectrometry

Fig. S2 (A) Theoretical isotope pattern of $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$; (B) Orbitrap experimental isotope pattern of the ion assigned as $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$; (C) Mass selection of a single peak at $\mathrm{m} / \mathrm{z} 163$ in the ion trap which corresponds to $\left[{ }^{98} \mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$; (D) Theoretical isotope pattern of $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]^{2-}$; (E) Orbitrap experimental isotope pattern of the ion assigned as $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]^{2-}$; Mass selection of a single peak at $\mathrm{m} / \mathrm{z} 152$ in the ion trap which corresponds to $\left[{ }^{[192\}} \mathrm{Mo}_{2} \mathrm{O}_{7}\right]^{2-}$.

Fig. S3 Negative ion mode ion trap ESI-MS of $(\mathrm{TBA})_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]$ in acetonitrile showing the formation of several molybdate oxyanions. α_{x} ions: $\left[\left(\mathrm{MoO}_{3}\right)_{1}(\mathrm{OH})\right]^{-}\left(\mathrm{m} / \mathrm{z}\right.$ 163); $\left[\left(\mathrm{MoO}_{3}\right)_{2}(\mathrm{OH})\right]^{-} \quad(\mathrm{m} / \mathrm{z} 305)$; $\left[\left(\mathrm{MoO}_{3}\right)_{3}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 449) ;\left[\left(\mathrm{MoO}_{3}\right)_{4}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 593) . \beta_{\mathrm{n}}$ ions: $\left[\left(\mathrm{MoO}_{3}\right)_{2} \mathrm{O}\right]^{2-}(\mathrm{m} / \mathrm{z} 152) ;\left[\left(\mathrm{MoO}_{3}\right)_{3} \mathrm{O}\right]^{2-}(\mathrm{m} / \mathrm{z}$ 224); $\left[\left(\mathrm{MoO}_{3}\right)_{4} \mathrm{O}\right]^{2-}(\mathrm{m} / \mathrm{z} 297) ;\left[\left(\mathrm{MoO}_{3}\right)_{5} \mathrm{O}\right]^{2-}\left(\mathrm{m} / \mathrm{z} \mathrm{368);}\left[\left(\mathrm{MoO}_{3}\right)_{6} \mathrm{O}\right]^{2-}(\mathrm{m} / \mathrm{z} 440)\right.$. * ions: $\left[\left\{\left(\mathrm{MoO}_{3}\right)_{2} \mathrm{O}\right\}^{2-}\right.$ $\left.(\mathrm{TBA})^{+}\right]^{-}(\mathrm{m} / \mathrm{z} 546) ; \quad\left[\left\{\left(\mathrm{MoO}_{3}\right)_{3} \mathrm{O}\right\}^{2-}(\mathrm{TBA})^{+}\right]^{-}(\mathrm{m} / \mathrm{z} 690) ;\left[\left\{\left(\mathrm{MoO}_{3}\right)_{4} \mathrm{O}\right\}^{2-}(\mathrm{TBA})^{+}\right]^{-}(\mathrm{m} / \mathrm{z} 834)$. TBA $=$ tetrabutylammonium, z represents the charge state of the anion.

Fig. S4 Multistage mass spectrometry (MS^{n}) experiments demonstrating a two-step gas-phase catalytic cycle for the decomposition of formic acid (Scheme 1D). Ion-molecule reactions (IMR) of $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$ ($\mathrm{m} / \mathrm{z} 163$) with $\mathrm{HCO}_{2} \mathrm{H}$ were obtained at the given activation times, collision-induced dissociation (CID) experiments on $\left[\mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 191)$ were obtained using a Q value of 0.25 and an activation time of 10 ms with the given Normalised Collision Energies (NCE): (A) MS ${ }^{2}$ IMR (at 1300 ms); (B) MS ${ }^{3}$ CID (NCE = 13\%); (C) MS ${ }^{4}$ IMR (at 1200 ms); (D) MS ${ }^{5}$ CID (NCE = 12\%); (E) MS ${ }^{6}$ IMR (at 1200 ms); (F) MS 7 CID (NCE = 12\%); (G) MS ${ }^{8}$ IMR (at 1200 ms); (H) MS ${ }^{9}$ CID (NCE $=12 \%$). An asterisk (*) denotes the mass selected precursor ion.

Fig. S5 MS ${ }^{4}$ IMR experiment of $\left[\mathrm{HMoO}_{3}\right]^{-}(\mathrm{m} / \mathrm{z} 147)$ with $\mathrm{HCO}_{2} \mathrm{H}\left(\left[\mathrm{HCO}_{2} \mathrm{H}\right]_{\text {ion trap }}=9.2 \times 10^{9}\right.$ molecules cm^{-3}) at an activation time of $10,000 \mathrm{~ms}$. An asterisk (${ }^{*}$) denotes the mass selected precursor ion.

Fig. S6 MS ${ }^{2}$ IMR on $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]^{2-}(\mathrm{m} / \mathrm{z} 152)$ with $\mathrm{HCO}_{2} \mathrm{H}$ showing the formation of the primary product ion $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 305)$ and the secondary product ion $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 333)$. The formate anion $\mathrm{HCO}_{2}^{-}(\mathrm{m} / \mathrm{z} 45)$, which is the other product ion formed upon protonation of $\left[\mathrm{Mo}_{2} \mathrm{O}_{7}\right]^{2-}$ by $\mathrm{HCO}_{2} \mathrm{H}$, is not experimentally observed due to the low mass cut-off of the ion trap.

Fig. S7 Multistage mass spectrometry $\left(\mathrm{MS}^{n}\right)$ experiments on $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}$demonstrating a two-step gas-phase catalytic cycle for the selective decomposition of formic acid. Ion-molecule reactions (IMR) of $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 305)$ with $\mathrm{HCO}_{2} \mathrm{H}$ were obtained at the given activation times, collision-induced dissociation (CID) experiments on $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 333)$ were obtained using a Q value of 0.25 and an activation time of 10 ms with the given Normalised Collision Energies (NCE): (A) MS ${ }^{3}$ IMR (at 200 ms); (B) MS ${ }^{4}$ CID (NCE = 8\%); (C) MS ${ }^{5}$ IMR (at 200 ms); (D) MS ${ }^{6}$ CID (NCE = 8\%); (E) MS ${ }^{7}$ IMR (at 200 ms); (F) MS ${ }^{8}$ CID (NCE = 8\%). An asterisk (*) denotes the mass selected precursor ion.

Fig. S8 MS ${ }^{4}$ CID experiment of $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 333)$ illustrating decarbonylation, to produce $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 305)$ as the major product ion, is preferred over decarboxylation to produce $\left[\mathrm{HMo}_{2} \mathrm{O}_{6}\right]^{-}(\mathrm{m} / \mathrm{z} 289)$ as a minor product ion. Spectrum obtained using a Q value of 0.25 , an activation time of 10 ms and at an NCE of 8%. An asterisk (*) denotes the mass selected precursor ion.

Fig. S9 Multistage mass spectrometry $\left(\mathrm{MS}^{n}\right)$ experiments on $\left[\mathrm{Mo}_{3} \mathrm{O}_{9}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}$demonstrating a two-step gas-phase catalytic cycle for the decomposition of formic acid. (A) $\mathrm{MS}^{2} \mathrm{IMR}$ of $\left[\mathrm{Mo}_{3} \mathrm{O}_{9}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 449)$ with $\mathrm{HCO}_{2} \mathrm{H}$ at an activation time of 300 ms ; (B) $\mathrm{MS}^{3} \mathrm{CID}$ of $\left[\mathrm{Mo}_{3} \mathrm{O}_{9}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 477)$ obtained using an activation Q of 0.25 , an activation time of 10 ms and a Normalised Collision Energy (NCE) of 8.5\%; (C) $\mathrm{MS}^{4} \mathrm{IMR}$ of $\left[\mathrm{Mo}_{3} \mathrm{O}_{9}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 449)$ with $\mathrm{HCO}_{2} \mathrm{H}$ at an activation time of 200 ms ; (D) MS ${ }^{4}$ IMR of $\left[\mathrm{HMO}_{3} \mathrm{O}_{9}\right]^{-}(\mathrm{m} / \mathrm{z} 433)$ with $\mathrm{HCO}_{2} \mathrm{H}$ at an activation time of 100 ms . An asterisk (*) denotes the mass selected precursor ion.

Fig. S10 Multistage mass spectrometry (MS^{n}) experiments on $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}$demonstrating a twostep gas-phase catalytic cycle for the decomposition of formic acid. (A) $\mathrm{MS}^{2} \mathrm{IMR}$ of $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z}$ 592) with $\mathrm{HCO}_{2} \mathrm{H}$ at an activation time of 5000 ms ; (B) $\mathrm{MS}^{3} \mathrm{CID}$ of $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 620)$ obtained using an activation Q of 0.25 , an activation time of 10 ms and a Normalised Collision Energy (NCE) of 7.5%; (C) $\mathrm{MS}^{4} \mathrm{IMR}$ of $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}(\mathrm{OH})\right]^{-}(\mathrm{m} / \mathrm{z} 592)$ with $\mathrm{HCO}_{2} \mathrm{H}$ at an activation time of 5000 ms ; (D) MS^{4} IMR of $\left[\mathrm{HMO}_{4} \mathrm{O}_{12}\right]^{-}(\mathrm{m} / \mathrm{z} 576)$ with $\mathrm{HCO}_{2} \mathrm{H}$ at an activation time of 30 ms . An asterisk (*) denotes the mass selected precursor ion.

Fig. S11 Multistage mass spectrometry (MS^{n}) experiments on ${ }^{18} \mathrm{O}$-labelled molybdate anions. Ionmolecule reactions (IMR) of $\left[{ }^{100} \mathrm{Mo}^{18 / 16} \mathrm{O}_{3}\left({ }^{(18 / 16} \mathrm{OH}\right)\right]^{-}$with $\mathrm{HCO}_{2} \mathrm{H}$ were obtained at the given activation times, collision-induced dissociation (CID) experiments on [${ }^{100} \mathrm{Mo}^{18 / 16} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)$] - were obtained using a Q value of 0.25 and an activation time of 10 ms with the given Normalised Collision Energies (NCE): (A) MS ${ }^{2}$ IMR on $\left[{ }^{100} \mathrm{Mo}^{18} \mathrm{O}_{3}\left({ }^{18} \mathrm{OH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 173)$ at 500 ms ; (B) $\mathrm{MS}^{3} \mathrm{CID}$ of $\left[{ }^{100} \mathrm{Mo}^{18} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 199)$ (NCE $=16 \%)$. (Δ) denotes a secondary product ion corresponding to $\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 197)$; (C) MS^{4} IMR on ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ scrambled $\left[{ }^{100} \mathrm{Mo}^{18 / 16} \mathrm{O}_{3}\left({ }^{18 / 16} \mathrm{OH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 171)$ at 400 ms . (Λ) corresponds to $\left[{ }^{100} \mathrm{Mo}^{18} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 199)$; (D) MS ${ }^{5} \mathrm{CID}$ of $\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 197)$ (NCE $\left.=15 \%\right)$. (\wedge) denotes a secondary product ion corresponding to $\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}_{1}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}\left(\mathrm{m} / \mathrm{z}\right.$ 195); (E) MS ${ }^{6}$ IMR on $\left[{ }^{100} \mathrm{Mo}^{18 / 16} \mathrm{O}_{3}\left({ }^{18 / 16} \mathrm{OH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 169)$ at 500 ms . (Ψ) corresponds to $\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 197)$; (F) MS ${ }^{7}$ CID of $\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}_{1}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z}$ 195) (NCE $=15 \%)$. (ζ) denotes a secondary product ion corresponding to $\left[{ }^{100} \mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 193)$; (G) MS ${ }^{7} \mathrm{IMR}$ on $\left[{ }^{100} \mathrm{Mo}^{18 / 16} \mathrm{O}_{3}\left({ }^{18 / 16} \mathrm{OH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 167)$ at 400 ms. (Ω) corresponds to $\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}_{1}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z} 195)$; (H) MS ${ }^{9} \mathrm{CID}$ of $\left[{ }^{100} \mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}(\mathrm{m} / \mathrm{z}$ 193) (NCE $=16 \%$). An asterisk (*) denotes the mass selected precursor ion.

Equations associated with sequential ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ scrambling found in Fig. S11.

Fig. S11D:

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
{[100} \\
\left.\mathrm{MoO}^{18} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-} \\
\mathbf{2}\left({ }^{18} \mathrm{O}_{2}\right), m / z 197 & \rightarrow & {\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}(\mathrm{OH})\right]^{-}+\mathrm{CO}} \\
& & \mathbf{1}\left({ }^{18} \mathrm{O}_{2}\right), m / z 169 \\
& & \\
{\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}} & \rightarrow & {\left[{ }^{100} \mathrm{Mo}^{18} \mathrm{O}_{3}(\mathrm{H})\right]^{-}+\mathrm{CO}_{2}} \\
\left.\mathbf{2}\left({ }^{18} \mathrm{O}_{2}\right), m / z 1{ }^{18} \mathrm{O}_{2}\right), \mathrm{m} / \mathrm{z} 153
\end{array}\right.}
\end{array}
$$

Fig. S11E:

$$
\begin{align*}
& {\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}(\mathrm{OH})\right]^{-}+\mathrm{HCO}_{2} \mathrm{H} \rightarrow\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}+\mathrm{H}_{2} \mathrm{O}} \tag{S3a}\\
& \mathbf{1}\left({ }^{18} \mathbf{O}_{2}\right), m / z 169 \quad \mathbf{2}\left({ }^{18} \mathbf{O}_{2}\right), m / z 197 \\
& {\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}\left({ }^{18} \mathrm{OH}\right)\right]^{-}+\mathrm{HCO}_{2} \mathrm{H} \quad \rightarrow \quad\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}+\mathrm{H}_{2}{ }^{18} \mathrm{O}} \tag{S3b}\\
& \left.\mathbf{1}\left({ }^{18} \mathbf{O}_{2}\right) \text { ', } m / z 169 \quad \mathbf{2 (~}{ }^{18} \mathbf{O}_{1}\right), m / z 195
\end{align*}
$$

Fig. S11F:

$$
\begin{align*}
& {\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-} \rightarrow\left[{ }^{100} \mathrm{MoO}^{18} \mathrm{O}_{2}(\mathrm{OH})\right]^{-}+\mathrm{CO}} \tag{S4}\\
& \mathbf{2}\left({ }^{18} \mathbf{O}_{1}\right), m / z 195 \quad \mathbf{1}\left({ }^{18} \mathbf{O}_{1}\right), m / z 167 \\
& {\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-} \rightarrow\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}(\mathrm{H})\right]^{-}+\mathrm{CO}_{2}} \tag{S5}\\
& \left.\mathbf{2}\left({ }^{18} \mathbf{O}_{1}\right), m / z 195 \quad \mathbf{3 (}{ }^{\mathbf{1 8}} \mathbf{O}_{\mathbf{1}}\right), m / z 151
\end{align*}
$$

Fig. S11G:

$$
\begin{align*}
& {\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}(\mathrm{OH})\right]^{-}+\mathrm{HCO}_{2} \mathrm{H} \rightarrow\left[{ }^{100} \mathrm{MoO}_{2}{ }^{18} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}+\mathrm{H}_{2} \mathrm{O}} \tag{S6a}\\
& \mathbf{1}\left({ }^{18} \mathbf{O}_{\mathbf{1}}\right), \mathrm{m} / \mathrm{z} 167 \quad \mathbf{2}\left({ }^{18} \mathbf{O}_{\mathbf{1}}\right), \mathrm{m} / \mathrm{z} 195 \\
& {\left[{ }^{100} \mathrm{MoO}_{3}\left({ }^{18} \mathrm{OH}\right)\right]^{-}+\mathrm{HCO}_{2} \mathrm{H} \quad \rightarrow \quad\left[{ }^{100} \mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}+\mathrm{H}_{2}{ }^{18} \mathrm{O}} \\
& \mathbf{1}\left({ }^{18} \mathbf{O}_{1}\right)^{\prime}, m / z 167 \quad \text { 2, } \mathrm{m} / \mathrm{z} 193 \tag{S6b}
\end{align*}
$$

Fig. S11H: (note: same as eqs 5 and 6, but with different Mo isotope).

$$
\begin{align*}
& {\left[{ }^{100} \mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-} \rightarrow\left[{ }^{100} \mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}+\mathrm{CO}} \tag{S7}\\
& \text { 2, m/z } 193 \\
& \text { 1, m/z } 165 \\
& {\left[{ }^{100} \mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-} \rightarrow\left[{ }^{100} \mathrm{MoO}_{3}(\mathrm{H})\right]^{-}+\mathrm{CO}_{2}} \tag{S8}\\
& \text { 2, m/z } 193 \\
& \text { 3, m/z } 149
\end{align*}
$$

(B)

Intermolecular proton transfer

Fig. S12 DFT calculated energy diagrams relevant to the ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ scrambling pathways: (A) intramolecular proton transfer pathway (eq. 17); (B) intermolecular proton transfer pathway (eq. 18). The relative enthalpies $\left(\Delta H^{0}(0 \mathrm{~K})\right.$ are given in $\mathrm{kcal} \mathrm{mol}^{-1}$ and are calculated at the $\omega \mathrm{B} 97 \mathrm{M}-\mathrm{D} 3(\mathrm{BJ}) / \mathrm{def} 2-$ QZVPP// ω B97XD/def2-TZVP level of theory.

Fig. $\mathbf{S 1 3}$ Kinetic plots for the multistage mass spectrometry ion-molecule reaction experiments (MSn IMR $)$ on $\left[\left(\mathrm{MoO}_{3}\right)_{x}(\mathrm{OD})\right]^{-}(x=1-2)$ with d_{1}-formic acid $\left(\mathrm{DCO}_{2} \mathrm{H}\right)\left(\left[\mathrm{DCO}_{2} \mathrm{H}\right]\right.$ ion trap $=3.6 \times 10^{10}$ molecule cm^{-3}). (A) Kinetic curve for the $\mathrm{MS}^{4} \mathrm{IMR}$ of $\left[\mathrm{MoO}_{3}(\mathrm{OD})\right]^{-}\left(1_{\mathrm{D}}, \mathrm{m} / \mathrm{z} 164\right)$ showing depletion of 1_{D} (black squares, closed) and product ion formation via dehydration ($\mathbf{2}_{\mathrm{D}}$, red circles, closed) and H/D exchange (1, blue triangles, closed); (B) Normalised branching ratios for the product ions 2_{D} and 1 observed in (A); (C) Kinetic curve for the MS^{5} IMR of $\left[\mathrm{Mo}_{2} \mathrm{O}_{6}(\mathrm{OD})\right]^{-}\left(4_{\mathrm{D}}, \mathrm{m} / \mathrm{z} 306\right)$ showing depletion of 4_{D} (black squares, open) and product ion formation via dehydration (5_{D}, red circles, open) and H/D exchange (4, blue triangles, open); (D) Normalised branching ratios for the product ions 5_{D} and 4 observed in (C). Each point represents the intensity of the ion peaks as a proportion of the total product ion intensity at various activation times (ms).

Table S2: Benchmarking of various levels of theory to best reproduce the energies for decomposition of formic acid via dehydrogenation $\left(\mathrm{H}_{2}+\mathrm{CO}_{2}\right)$ and decarbonylation $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}\right)$. Standard heats of formation obtained from NIST Chemistry WebBook. All relative enthalpy (ΔH) values are given in kcal mol^{-1}.

	Dehydrogenation $\left(\mathbf{H}_{\mathbf{2}} \mathbf{+} \mathbf{C O}_{\mathbf{2}}\right)$	Decarbonylation $\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{C O}\right)$
Standard heats of formation	-3.5	6.3
wB97XD/def2-TZVPP	-3.4	11.7
wB97M-D3(BJ)/def2- QZVPP//wB97XD/def2-TZVPP	-2.8	6.8
PWPB95-D3(BJ)/def2- QZVPP//wB97XD/def2-TZVPP	-4.9	9.4
DSD-PBEP86-D3(BJ)/def2- QZVPP//wB97XD/def2-TZVPP	-4.3	9.3

Discussion on alternative mechanisms for reaction (4) involving protonation of an oxo ligand.

Proton transfer from formic acid to the oxo- ligand of $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$, 1, proceeds via TS1-15a (Fig. S14). Following the imaginary mode in one direction gives the five-coordinate complex $\left[\left(\mathrm{HCO}_{2}\right) \mathrm{Mo}(\mathrm{O})_{2}(\mathrm{OH})_{2}\right]^{-}, 15 \mathrm{a}$, where the formate, HCO_{2}^{-}, is bound to the $\mathrm{Mo}(\mathrm{VI})$ center. Following the imaginary mode in the other direction shows the formation of an initial ionmolecule complex, 1.FA', where the acidic proton of formic acid is hydrogen bonding to the oxo- ligand to be protonated. We have not been able to optimize the structure of 1.FA' as an energy minimum however linear potential energy surface (PES) scans (Fig. S16) indicate its formation as formic acid, $\mathrm{HCO}_{2} \mathrm{H}$, and $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]$, 1, come together in an ion-molecule reaction. The estimated activation barrier for the proton transfer in TS1-15a is $\Delta H^{0 \ddagger} \mathbf{+ 7 . 5} \mathrm{kcal}$ mol^{-1}. Compared to protonation of the hydroxo- ligand (Fig. 5), a similar activation barrier is observed for TS1-2 of $\Delta H^{0 \ddagger}+7.7 \mathrm{kcal} \mathrm{mol}^{-1}$. However, we note that the overall ΔH^{0} of TS1-15a (-12.2 $\mathrm{kcal} \mathrm{mol}^{-1}$) is lower than that of TS1-2 (-8.2 $\mathrm{kcal} \mathrm{mol}^{-1}$).

Upon formation of the five-coordinate $\left[\left(\mathrm{HCO}_{2}\right) \mathrm{Mo}(\mathrm{O})_{2}(\mathrm{OH})_{2}\right]$, 15a, elimination of water can proceed via several similar pathways to give $\left[\mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]$, 2, as observed in the MS-IMR experiments. These pathways are summarized in Fig. $\mathrm{S} 14-\mathrm{S} 15$ and described briefly here.

Fig. S14 DFT calculated energy surface for the ion-molecule reaction of $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$with $\mathrm{HCO}_{2} \mathrm{H}$. Protonation at an oxo- ligand followed by the elimination of water via intramolecular deprotonation. Elimination of water from equatorial position (black). Rearrangement of hydroxide ligands (blue) followed by elimination of water from axial position (gray). The relative enthalpies $\Delta H^{\circ}(0 \mathrm{~K})$ are given in kcal mol^{-1} and are calculated at the ω B97M-D3(BJ)/def2-QZVPP// ω B97XD/def2-TZVPP level of theory.

The most energetically favorable pathway found occurs through an equatorial displacement of $\mathrm{H}_{2} \mathrm{O}$ from 15a through TS15a-2a ($\Delta H^{0}=-0.5 \mathrm{kcal} \mathrm{mol}^{-1}$). Deprotonation of the hydroxide in the axial position of 15a and attack of the equatorial hydroxide TS15a-12a ($\Delta H^{0 \ddagger}=+16.9 \mathrm{kcal}$ mol^{-1}) results in the formation of $\mathrm{H}_{2} \mathrm{O}$ in the hydrogen bonded ion-molecule complex $\left[\mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right]$, 2a. $\mathbf{H}_{2} \mathrm{O}$, akin to what was observed in Fig. 5. Removal of $\mathrm{H}_{2} \mathrm{O}$ results in 2a. Alternatively, the hydroxide ligands in 15a can undergo a rearrangement via TS15a to give 15a' where the hydroxide ligands are set up to undergo water elimination from an axial position (TS15a'-2a'). This gives the ion-molecule complex $\mathbf{2 a} \mathbf{a}^{\prime} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ which is an isomer of $\mathbf{2 a} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ where the $\mathrm{H}_{2} \mathrm{O}$ is bound to 2 a in a different position. We note that the difference in energies between $\mathbf{2 a} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ and $\mathbf{2 a} \mathbf{a}^{\prime} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ are minor. The key transition state barrier for this channel is ca. $5.2 \mathrm{kcal}_{\mathrm{kcl}}{ }^{-1}$ higher in energy than elimination of $\mathrm{H}_{2} \mathrm{O}$ via equatorial intramolecular deprotonation.

Fig. S15 DFT calculated energy surface for the ion-molecule reaction of $\left[\mathrm{MoO}_{3}(\mathrm{OH})\right]^{-}$with $\mathrm{HCO}_{2} \mathrm{H}$. Protonation at an oxo- ligand followed by the elimination of water via intramolecular deprotonation. The relative enthalpies $\Delta H^{0}(0 \mathrm{~K})$ are given in $\mathrm{kcal} \mathrm{mol}^{-1}$ and are calculated at the $\omega \mathrm{B} 97 \mathrm{M}-\mathrm{D} 3(\mathrm{BJ}) / \mathrm{def} 2-$ QZVPP// ω B97XD/def2-TZVPP level of theory.

Fig. S15 summarizes several pathways possible for the elimination of water via intramolecular deprotonation to give the conformer $\left[\mathrm{MoO}_{3}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{-}$, 2b. These pathways mirror those presented in Fig. S 14 and as such will be discussed in lesser detail. However, all appear to connect to $\mathbf{1 5 a}$ as a key intermediate that is initially formed in the IMR with $\mathrm{HCO}_{2} \mathrm{H}$. A conformation change of the formate ligand via TS15a-15b $\left(\Delta H^{0 \ddagger}=+2.2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ gives 15b where the C1-proton of the formate ligand is now hydrogen bonded to one of the oxo- ligands. Elimination water from the equatorial position via intramolecular deprotonation occurs through TS15b-2b to give 2b. $\mathbf{H}_{2} \mathbf{O}$. We have not been able to locate an optimized structure for TS15b2b and have estimated the relative ΔH^{0} based on the linear PES scan shown below (Fig. S17). Removal of $\mathrm{H}_{2} \mathrm{O}$ from $\mathbf{2 b}$. $\mathbf{H}_{\mathbf{2}} \mathrm{O}$ gives 2b. Alternatively, the hydroxide ligands in $\mathbf{1 5 a}$ can undergo a rearrangement first, via TS15a to give 15a', prior to the conformational change of the formate ligand resulting in 15b' where now the C1-proton of the formate ligand is hydrogen bonding to one of the hydroxo- ligands. Water is then eliminated from the axial position of 15b' to give 2b'. $\mathrm{H}_{2} \mathrm{O}$

Whilst the key transition states found for the elimination of water only differ by a few $\mathrm{kcal} \mathrm{mol}^{-1}$, only the pathway found occurring through TS15a-2a is below the 'zero' energy. Moreover, this remains greater than the key transition state barrier TS1-2 observed in Fig. 5 for protonation of the coordinated hydroxide by formic acid and elimination of $\mathrm{H}_{2} \mathrm{O}$. So while the initial protonation of an oxo-ligand may be lower in energy, the subsequent rearrangements required prior to elimination from 15a presents a significant barriers.

Fig. S16 Linear potential energy surface (PES) scan along Mo-O bond (increasing). Structure "1" corresponds to 15a' (Fig. S14); Structure "3" corresponds to 15a (Fig. S14); Structure "7" corresponds to TS1-15a (Fig. S14); Structure "30" corresponds to 1.FA' (Fig. S14).

2b. $\mathrm{H}_{2} \mathrm{O}$

TS15b-2b

15b

Fig. S17 Linear potential energy surface (PES) scan along O-H bond (decreasing) showing the elimination of water from equatorial intramolecular deprotonation to give $\mathbf{2 b} . \mathbf{H}_{2} \mathbf{O}$ (Fig. S15). Structure "1" corresponds to 15b (Fig. S15); Structure "14" corresponds to TS15b-2b (Fig. S15); Structure "18" corresponds to 2b. $\mathbf{H}_{2} \mathrm{O}$ (Fig. S15).

Fig. S18 Linear potential energy surface (PES) scan along O-O bond (increasing). Structure "1" corresponds to 2a. $\mathrm{H}_{2} \mathrm{O}$ (Fig. 5 and S14).

$1 . C 0$

"struc 6"

Fig. S19 Linear potential energy surface (PES) scan along H-C bond (increasing). Structure "1" corresponds to 1.CO (Fig. 5).

Fig. S20 Linear potential energy surface (PES) scan along O-C bond (increasing). Structure "1" corresponds to $\mathbf{3 a} . \mathrm{CO}_{2}$ (Fig. 5).

Fig. S21 DFT calculated energy surface for the reaction between $\left[\mathrm{MoO}_{2}(\mathrm{OH})\right]^{-}, \mathbf{3 b}$, and $\mathrm{HCO}_{2} \mathrm{H}$. The relative enthalpies $\left(\Delta H^{0}(0 \mathrm{~K})\right.$ are given in $\mathrm{kcal} \mathrm{mol}^{-1}$ and are calculated at the $\omega \mathrm{B} 97 \mathrm{M}-\mathrm{D} 3(\mathrm{BJ}) /$ def2QZVPP// ω B97XD/def2-TZVP level of theory.

Fig. S22 Linear potential energy surface (PES) scan along the O(formate)-Mo bond (decreasing). Structure "1" corresponds to 4.FA (Fig. 6); Structure "23" corresponds to 4-5a (Fig. 6).

TS1': -218 cm-1
(Fig. 5)

TS1-2: -502 cm^{-1}
(Fig. 5)

TS2: -119 cm ${ }^{-1}$ (Fig. 5)

TS2-1: -972 cm ${ }^{-1}$ (Fig. 5)

TS2-3: -302 cm-1 (Fig. 5)

TS4: $-40 \mathrm{~cm}^{-1}$ (Fig. 6)

TS5: -55 cm ${ }^{-1}$
(Fig. 6)

TS5-4: -1038 cm-1
(Fig. 6)

TS5-6: -306 cm- ${ }^{-1}$
(Fig. 6)

TS1: -2031 cm ${ }^{-1}$
(Fig. S12)

TS1": -536 cm-1 (Fig. S12)

TS1-15a: -585 cm ${ }^{-1}$ (Fig. S14 \& S15)

TS15a: -155 cm- ${ }^{-1}$
(Fig. S14 \& S15)

TS15a-2a: -1335 cm ${ }^{-1}$
(Fig. S14)

TS15a'-2a': -1338 cm ${ }^{-1}$
(Fig. S14)

TS15a-15b: -114 cm ${ }^{-1}$
(Fig. S15)

TS15a'-15b': -118 cm ${ }^{-1}$ (Fig. S15)

TS15b-2b (Fig. S15 \& S17)

TS15b'-2b': -1365 cm-1
(Fig. S15)

Fig. S23 Structures of transition states showing vectors associated with imaginary frequencies. Cartesian coordinates for each structure can be found in the associated xyz file.

Example of DSD-PBEP86-D3(BJ) input for ORCA5.0.3

```
*xyzfile 0 1 struc.xyz
! B2PLYP D3BJ RIJK def2-QZVPP def2-QZVPP/C def2/JK TIGHTSCF PAL8
%method
FrozenCore FC_ELECTRONS
Exchange x_PBE
Correlation c_P86
LDAOpt C_VWN5
ScalHFX 0.69
ScalDFX 0.31
ScalGGAC 0.44
ScalLDAC 0.44
ScalMP2C 1.00
end
%method
D3S6 0.48
D3A1 0.0
D3S8 0.0
D3A2 5.6
end
%mp2
RI on
DoSCS True
Ps 0.52
Pt 0.22
end
```


Example of PWPB95-D3(BJ) input for ORCA5.0.3

! RIJK RI-PWPB95 D3BJ def2-QZVPP def2/JK def2-QZVPP/C TIGHTSCF PAL4
*xyzfile 01 struc.xyz

References

1. G. Sheldrick, Acta Crystallogr. Section C, 2015, 71, 3-8.
2. C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Cryst. 2008, 41, 466-470.
3. Farrugia, L. J.; J. Appl. Cryst. 1999, 32, 837-838.
