Robust and efficient hydrogenation of carbonyl compounds catalyzed by NN-

Mn(I) complexes

Zheng Wang,^{a,b,c,*} Ning Ma,^a Xiaochi Lu,^a Ming Liu,^b Tian Liu,^b Qingbin Liu,^{c,*} Gregory A. Solan^{b,d,*} and Wen-Hua Sun^{b,*}

^a College of Science, Hebei Agricultural University, Baoding 071001, China

^bKey Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^cHebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China

^d Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK

1.	General information	S2
2.	Synthesis and characterization of the manganese complexes	S4
3.	NMR ($^{1}H/^{13}C$) and IR spectra for L1 – L6 and their manganese complexes	S9
	(Mn1 – Mn6)	
4.	Catalyst optimization using Mn1 as the precatalyst	S24
5	Single crystal X-ray diffraction studies	S31
6.	Characterization of selected alcohol products	S32
7.	References	S72

Table of Contents

1. General information

All manipulations and their complexes were carried out under a nitrogen atmosphere using standard Schlenk techniques. All solvents were dried and distilled under nitrogen prior to use. All the liquid substrates and solid substrates were used directly without further purification. Isopropyl alcohol (i-PrOH, 99.5+%, AR) was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. The bases (t-BuOK, t-BuONa, i-PrONa, NaOEt, NaOMe KOH, NaOH, CsCO₃, Na₂CO₃, LiOH·H₂O, LiOH, Ca(OH)₂, K₂CO₃, Na₂CO₃) are analytical reagent (98%, AR). NaBHEt₃ (1 M in THF) was purchased from Sigma-Aldrich, MnBr(CO)₅ and 6,7-dihydroquinolin-8(5H)-one were purchased from Shijiazhuang chiral chemical Co., LTD.. ¹H and ¹³C NMR spectra were recorded on Bruker AV-400 NMR and Bruker AV-500 NMR spectrometers. Chemical shift values in ¹H and ¹³C NMR spectra were referenced internally to the residual solvent resonances. Chemical shifts (δ) are reported in ppm and spin-spin coupling constant (J) are expressed in Hz, and other data are reported as follows: s = singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, t = triplet, m = multiplet, q = quartet, and br s = broad singlet. Infrared spectroscopy was performed in the solid state on a Bruker ALPHA. Elemental analysis was carried out with a Vario EL III CHN microanalyzer. GC analysis was carried out on a FuLi GC-9790Plus instrument (Zhe Jiang FuLi Analytical Instrument) using a PB-FFAP column (30m × 0.32mm × 0.25µm, Wuhan Puli Technology Co., Ltd.) or RB-WAX (30 m × 0.25 mm × 0.25 μm, Wuhan Puli Technology Co., Ltd.): injector temp. 300 °C; detector temp. 300 °C; column temp. 80 ºC; withdraw time 5 min, then 20

Products	CAS number	Substrates	CAS number
1-Phenylethanol	13323-81-4	Acetophenone	98-86-2
1-(4-Fluorophenyl)ethanol	403-41-8	4'-Fluoroacetophenone	403-42-9
1-(4-Chlorophenyl)ethanol	3391-10-4	4'-Chloroacetophenone	99-91-2
1-(4-Bromophenyl)ethanol	5391-88-8	4'-Bromoacetophenone	99-90-1
1-(4-Methylphenyl)ethanol	536-50-5	4'-Methylacetophenone	122-00-9
1-(4-Methoxyphenyl)ethanol	3319-15-1	4'-Methoxyacetophenone	100-06-1
1-(4-Nitrophenyl)ethanol	6531-13-1	4-Nitroacetophenone	100-19-6
4-(1-Hydroxyethyl)benzonitrile	52067-35-3	4-Acetylbenzonitrile	1443-80-7
1-(3-Methoxy-phenyl)ethanol	23308-82-9	3-Methoxyacetophenone	586-37-8
1-(3-Methyllphenyl)ethanol	25675-28-9	3'-Methylacetophenone	585-74-0
1-(3-Fluorophenyl)ethanol	402-63-1	3'-Fluoroacetophenone	455-36-7
1-(3-Chlorophenyl)ethanol	6939-95-3	3'-Chloroacetophenone	99-02-5
1-(3-Bromophenyl)ethanol	52780-14-0	3'-Bromoacetophenone	2142-63-4
1-(2-Methoxyphenyl)ethanol	13513-82-1	2'-Methoxyacetophenone	579-74-8
1-(2-Methylphenyl) ethanol	7287-82-3	2'-Methylacetophenone	577-16-2
1-(2-Fluorophenyl)ethanol	445-26-1	2'-Fluoroacetophenone	445-27-2
1-(2-Chlorophenyl)ethanol	13524-04-4	2'-Chloroacetophenone	2142-68-9
1-(2-Bromophenyl)ethanol	5411-56-3	2'-Bromoacetophenone	2142-69-0
1-(2,4-Dichlorophenyl)ethanol	1475-13-4	2',4'-Dichloroacetophenone	2234-16-4
1-(2,6-Dichlorophenyl)ethanol	53066-19-6	2',6'-Dichloroacetophenone	2040-05-3
1-(3,4-Dichlorophenyl)ethanol	1475-11-2	3',4'-Dichloroacetophenone	2642-63-9
1-Phenyl-1-butanol	614-14-2	Butyrophenone	495-40-9
1-(4-Methylphenyl)-1-propanol	25574-04-3	4'-Methylpropiophenone	5337-93-9

Tab	le S1	CAS	numbe	rs for	subst	rates	and	prod	lucts
-----	-------	-----	-------	--------	-------	-------	-----	------	-------

1-(3-chlorophenyl)propan-1-ol	32019-30-0	3'-Chloropropiophenone	34841-35-5
2-Methyl-1-phenyl-1-propanol	611-69-8	Isobutyrophenone	611-70-1
1-(1-Naphthyl)ethanol	57605-95-5	1'-Acetonaphthone	941-98-0
1-(2-Naphthyl)eyhanol	40295-80-5	2-Acetonaphthone	93-08-3
Cyclohexyl(phenyl)methanol	945-49-3	Benzoylcyclohexane	712-50-5
Benzhydrol	91-01-0	Benzophenone	119-61-9
1,2,3,4-Tetrahydro-1-naphthol	529-33-9	1-Tetralone	529-34-0
6,7,8,9-tetrahydro-5H-benzo [7]annulen-5-ol	35550-94-8	1-Benzosuberone	826-73-3
5,6,7,8-Tetrahydroquinolin-8-ol	14631-46-0	6,7-Dihydro-5H-quinolin-8- one	56826-69-8
1-(thiophen-2-yl)ethan-1-ol	78002-44-5	2-Acetylthiophene	88-15-3
1-Pyidin-2-yl-ethanol	18728-61-5	2-Acetylpyridine	1122-62-9
1-(2-Furyl)ethanol	4208-64-4	2-Acetylfuran	1192-62-7
1-(5-methylfuran-2-yl)ethan-1-ol	14003-15-7	2-Acetyl-5-methylfuran	1193-79-9
Cyclohexanol	108-93-0	Cyclohexanone	108-94-1
Cycloheptanol	502-41-0	Cycloheptanone	502-42-1
Cyclooctanol	96-41-3	Cyclooctanone	502-49-8
Cyclododecanol	1724-39-6	Cyclododecanone	830-13-7
4-Phenylcyclohexanol	5437-46-7	4-Phenylcyclohexanone	4894-75-1
4-t-Butylcyclohexanol	98-52-2	4-t-Butylcyclohexanone	98-53-3
3-Quinuclidinol	1619-34-7	3-Quinuclidinone	3731-38-2
DL-Menthol	89-78-1	Menthone	10458-14-7
1-phenylhexan-3-ol	2180-43-0	1-Phenylhexan-3-one	29898-25-7
4-Phenyl-2-butanol	2344-70-9	Benzylacetone	2550-26-7
4-phenyl-3-buten-2-ol	17488-65-2	Benzalacetone	122-57-6
Benzyl alcohol	100-51-6	Benzaldehyde	100-52-7
4-Methylbenzyl alcohol	589-18-4	p-Tolualdehyde	104-87-0
4-Fluorobenzyl alcohol	459-56-3	4-Fluorobenzaldehyde	459-57-4
4-Methoxybenzyl alcohol	105-13-5	p-Anisaldehyde	123-11-5
2-Naphthalenemethanol	1592-38-7	2-Naphthaldehyde	66-99-9
2-(Hydroxymethyl)pyridine	586-98-1	2-Pyridinecarboxaldehyde	1121-60-4
2-Thiophenemethanol	636-72-6	2-Thenaldehyde	98-03-3
Furfuryl alcohol	98-00-0	Furfural	98-01-1
1-Heptanol	111-70-6	Heptaldehyde	111-71-7
1-Octanol	111-87-5	Octanal	124-13-0

2 Synthesis and characterization of the ligands and manganese(I) complexes

2.1. Synthesis of N-R-8-N(H)C₉H₁₀N [L1 – L4]²

2.1.1 Preparation of N-isopropyl-5,6,7,8-tetrahydroquinolin-8-amine (L1)

Similar to our previous work,^{1,2a,2b} a mixture of 5,6,7-trihydroquinolin-8-one (1.47 g, 10 mmol), propan-2-amine (0.71 g, 12 mmol, 1.2 eq.) and sodium triacetoxyborohydride (6.33 g, 30 mmol, 3.0 eq.) were loaded in a 250 mL flask followed by 1,2-dichloroethane (DCE, 80 mL). The reaction mixture was stirred at 30 °C for 12 h. An aqueous saturated solution of NaHCO₃ (100 mL) was added to quench the reaction (pH > 8) and the mixture extracted with ethyl acetate (3 × 30 mL). The combined organic phases were dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The residue was purified by flash column chromatography using a gradient of petroleum ether/ EtOAc from 200:1 to 5:1 to afford **L1** as a yellow oil (1.72 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 4.1 Hz, 1H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.03 (dd, *J* = 7.5, 4.7 Hz, 1H), 2.88 (d, *J* = 6.2 Hz, 1H), 2.71 (c, 1H), 2.11, 2.00 (m, 1H), 2.76 (dd, *J* = 12.2, 5.2 Hz, 2H)

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 4.1 Hz, 1H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.03 (dd, *J* = 7.5, 4.7 Hz, 1H), 3.88 (d, *J* = 6.3 Hz, 1H), 3.71 (s, 1H), 3.11 – 2.99 (m, 1H), 2.76 (dd, *J* = 13.3, 5.2 Hz, 2H), 2.12 (t, *J* = 11.5 Hz, 1H), 2.04 – 1.93 (m, 1H), 1.79 – 1.68 (m, 2H), 1.16 (dd, *J* = 9.7, 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 146.8, 136.8, 132.3, 121.7, 55.1, 46.0, 29.2, 28.8, 24.6, 22.0, 19.6.

2.1.2 Preparation of *N*-butyl-5,6,7,8-tetrahydroquinolin-8-amine (L2)

Using a similar procedure and molar ratios to that described for **L1**, **L2** was obtained as a yellow oil (1.92 g, 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 4.4 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.01 (dd, *J* = 7.6, 4.8 Hz, 1H), 3.74 (t, *J* = 6.3 Hz, 1H), 2.78 – 2.66 (m, 4H), 2.17 – 2.05 (m, 1H), 1.96 (dd, *J* = 11.7, 6.2 Hz, 1H), 1.72 (ddd, *J* = 13.5, 9.5, 3.9 Hz, 2H), 1.58 – 1.48 (m, 2H), 1.37 (dd, *J* = 14.9, 7.4 Hz, 2H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 146.8, 146.7, 136.8, 136.7, 132.3, 121.7, 121.6, 58.1, 47.5, 47.5, 32.5, 28.8, 28.6, 20.6, 19.6, 14.0.

2.1.3 Preparation of *N*-benzyl-5,6,7,8-tetrahydroquinolin-8-amine (L3)

Using a similar procedure and molar ratios to that described for L1, L3 was obtained as a yellow oil (2.25 g, 93%). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 4.1 Hz, 1H), 7.38 (d, *J* = 7.4 Hz, 2H), 7.29 (dd, *J* = 14.3, 7.1 Hz, 3H), 7.22 – 7.16 (m, 1H), 7.00 (dd, *J* = 7.6, 4.8 Hz, 1H), 3.94 (s, 1H), 3.82 (dd, *J* = 7.3, 5.6 Hz, 1H), 3.01 (s, 1H), 2.85 – 2.74 (m, 1H), 2.73 – 2.64 (m, 1H), 2.15 (dt, *J* =

12.1, 5.1 Hz, 1H), 2.04 – 1.93 (m, 1H), 1.83 – 1.74 (m, 1H), 1.72 – 1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 146.8, 140.5, 140.5, 136.9, 132.5, 128.4, 128.3, 127.1, 126.9, 121.9, 57.6, 51.8, 28.9, 28.6, 19.7.

2.1.4 Preparation of N-phenyl-5,6,7,8-tetrahydroquinolin-8-amine (L4)

Using a similar procedure and molar ratios to that described for L1, L4 was obtained as a white solid (1.32 g, 58%). Mp: 105 - 106 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 4.2 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 7.9 Hz, 2H), 7.14 (dd, *J* = 7.6, 4.7 Hz, 1H), 6.79 – 6.71 (m, 3H), 4.51 (t, *J* = 5.5 Hz, 1H), 2.85 (q, *J* = 6.6 Hz, 2H), 2.01 – 1.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 148.1, 147.2, 137.1, 132.8, 129.2, 122.3, 117.6, 113.8, 53.9, 29.1, 28.5, 19.2.

2.2. Preparation of 8-(2-phenylhydrazineylidene)-5,6,7,8-tetrahydroquinoline (L5)^{2c}

The 5,6,7-trihydroquinolin-8-one (1.47 g, 10 mmol) was combined with freshly distilled phenylhydrazine (1.08 g, 10 mmol) in ethanol (10 mL) and the solution heated on a steam bath for 6 h. After cooling the red solution to room temperature, the resulting yellow crystals were collected by suction filtration, washed with cold ethanol (5 - 10 mL) and dried to give **L5** as a yellow solid (1.20 g, 50%). Mp: 114 – 115 °C.

¹H NMR (400 MHz, CDCl₃) δ 14.00 (s, 1H), 8.51 (d, *J* = 4.7 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.15 (dd, *J* = 7.6, 4.9 Hz, 1H), 6.83 (dd, *J* = 8.8, 4.3 Hz, 1H), 2.88 (t, *J* = 6.1 Hz, 2H), 2.85 – 2.80 (m, 2H), 2.05 – 1.95 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 151.0, 145.3, 145.0, 136.8, 135.3, 133.0, 129.2, 121.8, 119.6, 112.8, 112.8, 34.1, 30.2, 22.8.

2.3. Preparation of *N*-(2-(1H-benzo[d]imidazol-2-yl)ethyl)-5,6,7,8-tetrahydroquinolin-8-amine (L6)

Using a similar procedure and molar ratios to that described for **L1**, **L6** was obtained as a yellow oil (1.65 g, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 4.3 Hz, 1H), 7.60 – 7.50 (m, 2H), 7.49 – 7.42 (m, 1H), 7.21 – 7.11 (m, 3H), 3.95 (d, *J* = 6.4 Hz, 1H), 3.29 – 3.09 (m, 4H), 2.81 (dd, *J* = 12.2, 5.8 Hz, 2H), 2.17 (dd, *J* = 12.0, 5.2 Hz, 1H), 1.96 (dd, *J* = 12.1, 6.5 Hz, 1H), 1.89 – 1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 154.7, 146.5, 137.4, 133.1, 122.3, 121.7, 114.7, 57.0, 45.0, 29.0,

28.8, 28.7, 19.7.

2.4 Synthesis of manganese(I) complexes (Mn1 – Mn6)

2.4.1 Preparation of (N-*i*-Pr-8-NHC₉H₁₀N)Mn(CO)₃Br (Mn1)²

To a 25 mL Schlenk flask maintained under nitrogen, a solution of L1 (190 mg, 1 mmol) in THF (5 mL) was added followed by an orange solution of $Mn(CO)_5Br$ (275 mg, 1 mmol) in THF (10 mL). The reaction mixture was then stirred and heated to 65 °C for 24 h. Once cooled to room temperature the mixture was concentrated under reduced pressure. The solid residue was washed with hexane (10 mL) and then dried to give **Mn1** as a yellow solid (365 mg, 89%). Single crystals of **Mn1** were obtained by layering a saturated solution of the complex in dichloromethane with diethyl ether at 5 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, *J* = 25.1 Hz, 1H), 7.54 (d, *J* = 4.7 Hz, 1H), 7.30 (d, *J* = 2.1 Hz, 1H), 4.21 (t, *J* = 13.5 Hz, 1H), 3.64 (t, *J* = 12.1 Hz, 1H), 3.30 – 3.16 (m, 1H), 2.90 – 2.79 (m, 1H), 2.68 (d, *J* = 6.0 Hz, 1H), 2.18 (d, *J* = 5.5 Hz, 1H), 1.85 – 1.74 (m, 1H), 1.56 (s, 3H), 1.45 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 222.9, 222.8, 222.1, 158.3, 152.1, 139.3, 135.1, 125.1, 63.0, 48.4, 27.6, 27.6, 23.2, 20.8, 19.1; IR (ATR, cm⁻¹, KBr): 1906 (s, *v*_{CO}), 1922 (s, *v*_{CO}), 2017 (s, *v*_{CO}); Anal. Calcd for [C₁₅H₁₈BrMnN₂O₃ (Mw: 409.16)]: C, 44.03; H, 4.43; N, 6.85. Found: C, 44.11; H, 4.48; N, 6.84%.

2.4.2 Preparation of $(N-n-Bu-8-NHC_9H_{10}N)Mn(CO)_3Br$ (Mn2)

Using a similar procedure and molar ratios to that described for **Mn1**, **Mn2** was isolated as a yellow powder (392 mg, 92%).

¹H NMR (500 MHz, DMSO- d_6) δ 8.76 (d, J = 4.9 Hz, 1H), 7.77 (s, 1H), 7.51 – 7.43 (m, 1H), 4.20 – 4.08 (m, 1H), 3.58 (d, J = 10.7 Hz, 1H), 3.32 (s, 1H), 3.16 (d, J = 5.3 Hz, 2H), 2.87 – 2.73 (m, 2H), 2.05 – 1.93 (m, 2H), 1.85 – 1.75 (m, 2H), 1.65 – 1.58 (m, 1H), 1.44 (dd, J = 14.4, 7.2 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 223.1, 222.5, 221.9, 158.0, 151.9, 139.3, 135.0, 125.1, 63.5, 51.0, 31.1, 28.7, 27.2, 20.7, 20.3, 14.2; IR (ATR, cm⁻¹, KBr): 1916 (s, v_{co}), 1938 (s, v_{co}), 2017(s, v_{co}); Anal. Calcd for [C₁₆H₂₀BrMnN₂O₃ (Mw: 423.19)]: C, 45.41; H, 4.76; N, 6.62. Found: C, 45.49; H, 4.78; N, 6.60%.

2.4.3 Preparation of (N-Bn-8-NHC₉H₁₀N)Mn(CO)₃Br (Mn3)

Using a similar procedure and molar ratios to that described for **Mn1**, **Mn3** was isolated as a yellow powder (413 mg, 90%).

¹H NMR (500 MHz, DMSO- d_6) δ 8.76 (s, 1H), 7.75 (s, 1H), 7.53 (s, 1H), 7.41 (d, J = 29.7 Hz, 5H), 4.63 – 4.47 (m, 1H), 4.33 (d, J = 42.5 Hz, 2H), 3.33 (s, 1H), 2.77 (d, J = 14.7 Hz, 2H), 2.62 – 2.55 (m, 1H), 1.95 (s, 1H), 1.67 (d, J = 99.8 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 222.4, 220.7, 219.9, 160.0, 150.5, 139.1, 135.3, 129.3, 128.9, 128.7, 128.4, 128.1, 127.7, 124.2, 62.9, 53.8, 27.6, 26.0, 21.4; IR (ATR, cm⁻¹, KBr): 1904 (s, v_{CO}), 1936 (s, v_{CO}), 2019 (s, v_{CO}); Anal. Calcd for [C₁₉H₁₈BrMnN₂O₃ (Mw: 457.21)]: C, 49.91; H, 3.97; N, 6.13. Found: C, 49.91; H, 4.02; N, 6.15%.

2.4.4 Preparation of (N-Ph-8-NHC₉H₁₀N)Mn(CO)₃Br (Mn4)

Using a similar procedure and molar ratios to that described for Mn1, Mn4 was isolated as a yellow powder (365 mg, 82%).

¹H NMR (400 MHz, DMSO- d_6)* δ 8.79 (s, 1H), 7.84 (s, 1H), 7.50 (d, J = 29.6 Hz, 5H), 7.21 (s, 1H), 5.78 (br, 1H), 5.06 (s, 1H), 2.81 (d, J = 35.1 Hz, 2H), 1.92 (dd, J = 55.8, 25.3 Hz, 4H); ¹³C NMR (125 MHz, DMSO- d_6) δ 223.1, 222.5, 220.7, 158.6, 157.2, 152.2, 150.9, 147.5, 139.4, 135.3, 129.9, 125.5, 64.1, 27.5, 27.2, 20.6; IR (ATR, cm⁻¹, KBr): 1907 (s, v_{co}), 1949 (s, v_{co}), 2023(s, v_{co}); Anal. Calcd for [C₁₈H₁₆BrMnN₂O₃ (Mw: 443.18)]: C, 48.78; H, 3.64; N, 6.32. Found: C, 48.81; H, 3.68; N, 6.31%.

*Mn4 may be contaminated with traces of paramagnetic material giving broad ¹H NMR peaks

2.4.5 Preparation of (N-Ph-8-NHC₉H₁₀N)Mn(CO)₃Br (Mn5)

Using a similar procedure and molar ratios to that described for **Mn1**, **Mn5** was isolated as a yellow powder (408 mg, 89%).

¹H NMR (400 MHz, DMSO- d_6)* δ 9.79 (br, 1H), 8.99 (d, J = 5.2 Hz, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.57 (d, J = 6.8 Hz, 1H), 7.28 (d, J = 7.5 Hz, 2H), 7.06 (d, J = 7.4 Hz, 2H), 6.99 (t, J = 6.9 Hz, 1H), 2.98 (t, J = 17.2 Hz, 4H), 1.98 – 1.83 (m, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 223.2, 221.2, 219.0, 167.6, 151.8, 145.0, 140.2, 138.7, 129.0, 126.5, 122.2, 118.1, 28.6, 27.6, 21.1; IR (ATR, cm⁻¹, KBr): 1919 (s, v_{CO}), 1942 (s, v_{CO}), 2027 (s, v_{CO}); Anal. Calcd for [C₁₈H₁₅BrMnN₃O₃ (*M*w: 456.18)]: C, 47.39; H, 3.31; N, 9.21. Found: C, 47.40; H, 3.33; N, 9.28%.

*Mn5 may be contaminated with traces of paramagnetic material giving broad ¹H NMR peaks.

2.4.6 Preparation of Mn6

To a 25 mL Schlenk flask maintained under nitrogen, a solution of **L6** (292 mg, 1 mmol) in toluene (5 mL) was added followed by an orange solution of $Mn(CO)_5Br$ (275 mg, 1 mmol) in toluene (10 mL). The reaction mixture was then stirred and heated at 110 °C for 24 h. Once cooled to room temperature the mixture was concentrated under reduced pressure. The solid residue was washed with *n*-hexane (10 mL) and then dried to give **Mn6** as a green-yellow solid (426 mg, 83%).

¹H NMR (500 MHz, DMSO- d_6) δ 8.73 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 6.3 Hz, 2H), 6.86 (br, 1H), 4.54 (d, J = 4.9 Hz, 1H), 3.07 (br, 2H), 2.80 (br, 2H), 2.22 (br, 1H), 2.07 (dd, J = 22.2, 11.9 Hz, 2H), 1.90 (d, J = 9.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 220.2, 219.8, 218.9, 159.7, 158.8, 151.5, 151.4, 140.0, 139.8, 135.7, 135.6, 125.5, 125.1, 123.9, 123.7, 123.4, 123.0, 117.0, 113.4, 67.4, 65.1, 27.5, 26.6, 25.5, 21.1; IR (ATR, cm⁻¹, KBr): 1912 (s, v_{CO}), 1930 (s, v_{CO}), 2027(s, v_{CO}); Anal. Calcd for [C₂₁H₂₀BrMnN₄O₃ (Mw: 511.26)]: C, 49.34; H, 3.94; N, 10.96. Found: C, 49.40; H, 3.98; N, 10.94%.

2.4.7 Complexes **Mn7** – **Mn10** was synthesized and characterized according to the procedure reported by ourselves.²

3. NMR (¹H/¹³C) and IR spectra for L1 – L6 and their manganese complexes (Mn1 – Mn6)

Figure S1 The ¹H and ¹³C NMR spectra for L1 in CDCl₃

Figure S2 The ¹H and ¹³C NMR spectra for L2 in CDCl₃

Figure S3 The ¹H and ¹³C NMR spectra for L3 in CDCl₃

Figure S4 The ¹H and ¹³C NMR spectra for L4 in CDCl₃

S12

Figure S5 The ¹H and ¹³C NMR spectra for L5 in CDCl₃

Figure S6 The ¹H and ¹³C NMR spectra for L6 in CDCl₃

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure S10 The ¹H and ¹³C NMR spectra for Mn4 in DMSO-d₆

Figure S11 The ¹H and ¹³C NMR spectra for Mn5 in DMSO-d₆

Figure S14 FT-IR spectrum of Mn2; recorded in the solid state on a Bruker ALPHA.

Figure S15 FT-IR spectrum of Mn3; recorded in the solid state on a Bruker ALPHA.

Figure S16 FT-IR spectrum of Mn4; recorded in the solid state on a Bruker ALPHA.

Figure S17 FT-IR spectrum of Mn5; recorded in the solid state on a Bruker ALPHA.

Figure S18 FT-IR spectrum of Mn6; recorded in the solid state on a Bruker ALPHA.

4. Catalyst optimization using Mn1 as the precatalyst

Chart S1 Selected examples of catalysts used for TH ketones

4.1 General Procedure for catalytic study

Under a N₂ atmosphere, a 25 or 250 mL dried Schlenk tube, containing a stirrer bar, was charged with acetophenone (**a1**, 2.0 – 25.0 mmol), the manganese complex (**Mn1** - **Mn10**, 5.0 – 10.0 µmol), the desired amount of base (*t*-BuOK, *t*-BuONa, *i*-PrONa, NaOEt, NaOMe KOH, NaOH, CsCO₃, Na₂CO₃, LiOH·H₂O, LiOH, Ca(OH)₂, K₂CO₃, Na₂CO₃, NaBHEt₃, NaHMDS, KHMDS) (0.2 – 1.25 mmol) and *i*-PrOH (5 – 25 mL). The Schlenk tube was sealed and the contents stirred and heated to 90 °C for the desired reaction time (20 – 120 min). After cooling to room temperature, the pressure was slowly released. The reaction mixture was filtered through a plug of silica gel and then analyzed by GC.

4.2 Optimizing reaction conditions

Ĺ	0 <u>0.2 mol% [Mn], 10 mol% t-Bu</u> <i>i</i> -PrOH, 90 °C, 2 h a1	
Entry	[Mn]	Conversion % ^b
1	Mn1	97
2	Mn2	90
3	Mn3	87
4	Mn4	58
5	Mn5	69
6	Mn6	41
7	Mn7	85
8	Mn8	82
9	Mn9	78
10	Mn10	81
11	none	5

Table S2 Evaluation of manganese catalysts, **Mn1** - **Mn10**, for the transfer hydrogenation of acetophenone.^{*a*}

^a Conditions: 5.0 mmol acetophenone, 10 μmol (0.2 mol%) [Mn], 0.5 mmol *t*-BuOK (10 mol%), 5 mL *i*-PrOH, 90 °C (oil temperature), 2 h;
 ^b Determined by GC with dodecane as the internal standard.

Table S3 Screening of the type of base^a

	0.2 mol% Mn1, 1	0 mol% base
	a1	b1
Entry	Base	Conversion (%) ^b
1	<i>t</i> -BuOK	97
2	<i>t</i> -BuONa	99
3	<i>i</i> -PrONa	94
4	EtONa	90
5	MeONa	89
6	NaBHEt ₃	55
7	KHMDS	86
8	NaHMDS	91
9	Cs ₂ CO ₃	45
10	Na ₂ CO ₃	32
11	LiOH·H ₂ O	76
12	NaOH	94
13	КОН	91
14	Ca(OH) ₂	4
15	Ba(OH) ₂	14
16 ^c	<i>t</i> -BuONa	5
17	none	none
18 ^d	<i>t</i> -BuONa	6

 o Conditions: 5.0 mmol acetophenone, 10 μmol (0.2 mol%) **Mn1**, 0.5 mmol base (10 mol%), 5 mL i-PrOH, 90 °C (oil temperature), 2 h;

^b Determined by GC with dodecane as the internal standard;

^c In the absence of **Mn1**;

^{*d*} Mn(CO)₅Br was used as catalyst.

Table S4 Evaluation of the base loading^a

	0 <u>0.02 mol% Mn1, X mo</u> <i>i</i> -PrOH, 90 °C, 2 l a1	DI% <i>t</i> -BuONa
Entry	X mol% <i>t</i> -BuONa	Conversion (%) ^b
1	25	89
2	20	85
3	15	81
4	10	78
5	5	61
6	2.5	57
7	1.25	38
8	0	NR
9 ^c	5	92

^{*o*} Conditions: 25 mmol acetophenone, 5 μmol **Mn1**, X mol of *t*-BuONa (0 - 25 mol%), 10 mL *i*-PrOH (2.5 M), 90 °C (oil temperature), 2 h;

^b Determined by GC with dodecane as the internal standard;

^c 6 h.

NR = no reaction.

	0.02 mol% Mn1 , <i>i</i> -PrOH, 90	, 5 mol% base	ЭН
a1		b1	
Entry	Base	Conversion (%) ^b	TON
1	<i>t</i> -BuOK	80	4000
2	<i>t</i> -BuONa	92	4600
3	NaOH	76	3800
4	КОН	75	3750
5	MeONa	73	3650
6	None	nd	

Table S5 Optimization of the reaction parameters for transfer hydrogenation of acetophenone (a1)

^a Conditions: 25 mmol acetophenone, 5 μmol Mn1, 1.25 mol base (5 mol%), 10 mL i-PrOH

(2.5 M), 90 °C (oil temperature), 6 h, TON = turnover number;

^b Determined by GC with dodecane as the internal standard.

4.3 Investigation of the active species A

A dry 25 mL Schlenk flask, containing a stir bar, was charged sequentially with **Mn1** (0.204 g, 0.50 mmol), *t*-BuONa (0.245 g, 2.50 mmol) and *i*-PrOH (10 mL). The reaction mixture was stirred at 30 °C for 1 h forming a red solution. After the volatiles were removed under reduced pressure, the residue was dissolved in diethyl ether (10 mL) and filtered through Celite. The diethyl ether filtrate was concentrated to 1 mL and THF (2 mL) added and the mixture kept at - 20 °C overnight. The resulting red precipitate was collected and dried to give **A** (98 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.96 – 8.80 (m, 1H), 7.55 – 7.53 (m, 1H), 7.32 – 7.29 (m, 1H), 4.18 (d, *J* = 3.8 Hz, 1H), 3.71 – 3.56 (m, 1H), 3.23 -3.21(m, 1H), 2.94 – 2.72 (m, 2H), 2.72 – 2.61 (m, 1H), 1.56 (d, *J* = 6.1 Hz, 6H), 1.52 – 1.42 (d, *J* = 5.8 Hz, 6H); IR (ATR, cm⁻¹, KBr): 1905 (s, *v*_{CO}), 2003 (s, *v*_{CO}), 2019 (s, *v*_{CO}).

Figure S19¹H NMR (400 MHz, CDCl₃) spectrum of A

Figure S20 ¹H NMR (400 MHz, CDCl₃) spectrum of crude A in CDCl₃

Figure S21 ¹H NMR (400 MHz, CDCl₃) spectrum of the active species formed from the reaction of **Mn1** with *t*-BuONa in an isopropyl alcohol solution of *t*-BuONa.

Figure S22 FT-IR spectrum of A; recorded in the solid state on a Bruker ALPHA.

4.4 Investigation of the active species B

A dry 25 mL Schlenk flask, containing a stir bar, was charged sequentially with **Mn1** (0.102 g 0.25 mmol), *t*-BuONa (0.122 g, 1.25 mmol) and *i*-PrOH (10 mL), the reaction mixture was stirred at 90 °C for 1 h. Once cooled to room temperature, the mixture was filtered and the solvent removed under reduce pressure. The resulting yellowish residue was washed with a minimum amount of pentane and dried to give crude **B** as a yellow powder (41 mg). However, **B** proved very sensitive and was found to be contaminated with some unidentified paramagnetic impurity leading to a poorly resolved ¹H NMR spectrum. ESI found [($C_{15}H_{18}MnN_2O_3$) (**B**-H)⁺] = 329.25; Calcd for [($C_{15}H_{18}MnN_2O_3$) (**B**-H)⁺] = 329.26; IR (ATR, cm⁻¹, KBr): 1896 (s, v_{CO}), 1923 (s, v_{CO}), 2020 (s, v_{CO}).

Figure 23 ESI-MS (m/z) spectrum of B

ESI mass spectra recorded in acetone (1 mL) using the 3200 QTRAP 1200 infinity series instrument. Acetonitrile, flow rate = 1 mL/ min, electronic energy = 50 eV, Q1MS scan range = 100 -1000. The base peak corresponds to $[B-H]^+$ at m/z 329.25.

Figure 24 FT-IR spectrum of B; recorded in the solid state on a Bruker ALPHA.

5. Single crystal X-ray diffraction studies

Figure S25 ORTEP representations of [L1H]Br (left) and Mn1 (right). The thermal ellipsoids are shown at the 30% probability level, while the hydrogen atoms have been omitted for clarity.

Identification code	[L1 H]Br	Mn1	
CCDC No.	2248092	2248093	
Empirical formula	$C_{24}H_{38}Br_2N_4$	$C_{15}H_{18}BrMnN_2O_3$	
Formula weight	542.40	409.16	
Temperature/K	169.98(10)	169.99(10)	
Crystal system	monoclinic	monoclinic	
Space group	P2 ₁ /n	C2/c	
a/Å	17.4207(4)	21.7602(3)	
b/Å	7.60980(10)	12.71564(11)	
c/Å	19.8264(4)	16.6797(2)	
α/°	90	90	
β/°	95.023(2)	111.0588(14)	
γ/°	90	90	
Volume/ų	2618.25(9)	4306.96(9)	
Z	4	8	
$\rho_{calc}g/cm^3$	1.376	1.262	
µ/mm ⁻¹	4.045	7.247	
F(000)	1120.0	1648.0	
Crystal size/mm ³	$0.2 \times 0.05 \times 0.02$	0.3 × 0.2 × 0.15	
Radiation	Cu Kα (λ = 1.54184)	CuKα (λ = 1.54184)	
20 range for data collection/°	6.48 to 150.57	8.204 to 153.546	
Index ranges	$-21 \le h \le 21, -8 \le k \le 9, -24 \le I$	-25 ≤ h ≤ 27, -15 ≤ k ≤ 7, -20 ≤ l ≤ 20	
index ranges	≤ 24		
Reflections collected	21032	15658	
Independent reflections	5239 [R _{int} = 0.0422, R _{sigma} = 0.0346]	4369 [R _{int} = 0.0218, R _{sigma} = 0.0186]	
Data/restraints/parameters	5239/24/295	4369/0/202	
Goodness-of-fit on F ²	0.852	1.061	
Final R indexes [I>=2σ (I)]	R ₁ = 0.0513, wR ₂ = 0.1535	$R_1 = 0.0337$, $wR_2 = 0.0952$	
Final R indexes [all data]	R ₁ = 0.0609, wR ₂ = 0.1627	$R_1 = 0.0351$, $wR_2 = 0.0961$	
Largest diff. peak/hole / e Å ⁻³	1.03/-0.81	0.82/-0.47	

 Table S6 Crystal data and structure refinement for [L1H]Br and Mn1.

6. Characterization of selected alcohol products

The reaction mixtures were purified by flash gel chromatography (eluent: petroleum ether / ethyl acetate = 200:1 to 10:1) to give the desired product.

6.1. ¹H and ¹³C NMR of selected alcohol products

These spectroscopic data of selected alcohol products correspond to those reported in the

literature.³⁻⁶

6.1.1 1-Phenylethanol (b1, entry 1, Table 2)

OF

92% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 -7.30 (m, 5H), 4.90 (q, *J* = 6.4 Hz, 1H), 2.60 (brs, 1H), 1.54 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 128.5, 127.5, 125.4, 70.3, 25.2.

6.1.2 1-(4-Fluorophenyl)ethan-1-ol (b2, Table 3)

93% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.10-7.04 (m, 2H), 4.92 (q, J = 6.4 Hz, 1H), 1.92 (s, 1H), 1.52 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ162.1, 141.5, 127.1, 115.3, 69.78, 25.30.

6.1.3 1-(4-Chlorophenyl)ethan-1-ol (b3, Table 3)

95% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.31 (m, 4H), 4.91 (q, *J* = 6.4 Hz, 1H), 2.04 (s, 1H), 1.51 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 133.0, 128.6, 126.8, 69.7, 25.3.

6.1.4 1-(4-Bromophenyl)ethan-1-ol (b4, Table 3)

95% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.47 (m, 2H), 7.29-7.25 (m, 2H), 4.88 (q, J = 6.4 Hz, 1H), 2.05 (s, 1H), 1.49 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 131.4, 127.2, 121.0, 69.5, 25.1.

6.1.5 1-(4-Tolyl)ethan-1-ol (b5, Table 3)

91% yield, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8 Hz, 2H), 7.214 (d, *J* = 8 Hz, 2H), 4.91 (q, *J* = 6.4 Hz, 1H), 2.40 (s, 3H), 1.88 (s, 1H), 1.53 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 137.1, 129.2, 125.3, 70.2, 25.1, 21.1.

6.1.6 1-(4-Methoxyphenyl)ethan-1-ol (b6, Table 3)

MeO

85% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.31 (m, 2H), 6.95-6.92 (m, 2H),4.90 (q, J = 6.4 Hz, 1H), 3.85 (s, 1H), 1.88 (brs, 1H), 1.53 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 138.0, 126.7, 126.6, 113.9, 113.8, 70.0, 55.3, 25.0.

6.1.7 1-(3-Chlorophenyl)ethan-1-ol (b8, Table 3)

93% yield, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 1H), 7.34-7.28 (m, 3H),4.93 (q, J = 6.4 Hz, 1H), 1.94 (s, 1H), 1.54 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 134.3, 129.8, 127.6, 125.6, 123.6, 69.6, 25.2.

6.1.8 1-(3-Bromophenyl)ethan-1-ol (b9, Table 3)

96% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 1H), 7.46-6.42 (m, 1H), 7.34-7.31 (m, 1H), 7.27-7.24 (m, 1H), 4.90 (q, *J* = 6.4 Hz, 1H), 2.05 (brs, 1H), 1.52 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 130.4, 130.1, 128.6, 124.1, 122.5, 69.5, 25.2.

6.1.9 1-(2-Chlorophenyl)ethan-1-ol (b10, Table 3)

95% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.63 (m, 1H), 7.38-7.32 (m, 3H), 5.34 (q, *J* = 6.4 Hz, 1H), 2.06 (brs, 1H), 1.54 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 131.5, 129.3, 128.3, 127.2, 126.5, 66.8, 23.5.

6.1.10 1-(1-Tolyl)ethan-1-ol (**b16**, Table 3)

81% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.38 (m, 1H), 7.32-7.28 (m, 1H), 7.03-6.99 (m, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 5.14 (q, *J* = 6.4 Hz, 1H), 4.92 (s, 3H), 2.69 (brs, 1H), 1.56 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 133.7, 128.2, 126.1, 120.8, 110.4, 66.1, 55.3, 23.1.

6.1.11 1-(2,4-Dichlorophenyl)ethan-1-ol (b17, Table 3)6d,6e

95% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 1H), 7.29 (s, 1H), 7.21 (dd, *J* = 8.4, 2.1 Hz, 1H), 5.15 (q, *J* = 6.4 Hz, 1H), 3.15 (s, 1H), 1.39 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 133.3, 132.0, 129.0, 127.4, 127.4, 66.4, 23.5.

6.1.12 1-(3,4-Dichlorophenyl)ethan-1-ol (b18, Table 3)6b

94% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.13 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.78 (q, *J* = 6.5 Hz, 1H), 2.76 (s, 1H), 1.41 (d, *J* = 6.6 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 146.0, 132.4, 131.0, 130.3, 127.4, 124.8, 69.1, 25.1.

6.1.13 1-(5-fluoro-2-iodophenyl)ethan-1-ol (b20, Table 3)^{6c}

95% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 8.6, 5.5 Hz, 1H), 7.37 (dd, *J* = 10.0, 3.1 Hz, 1H), 6.79 (ddd, *J* = 8.6, 7.8, 3.1 Hz, 1H), 5.06 (qd, *J* = 6.3, 1.3 Hz, 1H), 2.06 (brs, 1H), 1.49 (d, *J* = 6.4 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 164.8, 162.3, 150.0, 149.9, 140.3 (dd, *J* = 13.1, 7.4 Hz), 116.5 (dd, *J* = 22.1, 17.9 Hz), 113.7 (dd, J = 23.3, 10.9 Hz), 73.4 (d, J = 11.6 Hz), 23.7 (d, J = 11.9 Hz).

6.1.14 1-(p-Tolyl)propan-1-ol (b21, Table 3)^{6b}

95% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 7.9 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 4.47 (t, *J* = 6.7 Hz, 1H), 2.41 (s, 1H), 2.33 (s, 3H), 1.83 – 1.61 (m, 2H), 0.87 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 137.0, 129.0, 126.0, 75.8, 31.8, 21.1, 10.2.

6.1.15 1-(3-Chlorophenyl)propan-1-ol (b22, Table 3)

94% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 2.2 Hz, 1H), 7.25 (d, *J* = 2.2 Hz, 2H), 7.21 (d, *J* = 1.9 Hz, 1H), 4.57 (t, *J* = 6.5 Hz, 1H), 1.93 (s, 1H), 1.81 – 1.71 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.6, 134.3, 129.6, 127.5, 126.1, 124.1, 75.3, 31.9, 9.9.

6.1.16 1-Phenylbutan-1-ol (b23, Table 3)^{6b}

96% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 4.4 Hz, 4H), 7.26 (dd, *J* = 9.0, 4.6 Hz, 1H), 4.65 (dd, *J* = 7.5, 5.9 Hz, 1H), 1.94 (s, 1H), 1.78 (dddd, *J* = 15.5, 10.1, 6.1, 3.7 Hz, 1H), 1.71 – 1.62 (m, 1H), 1.47 – 1.37 (m, 1H), 1.35 – 1.23 (m, 1H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 128.4, 127.4, 125.9, 74.4, 41.2, 19.0, 13.9.

6.1.17 2-Methyl-1-phenylpropan-1-ol (b24, Table 2)⁶

92% yield, colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 5H), 4.34 (d, *J* = 6.9 Hz, 1H), 1.99 – 1.93 (m, 1H), 1.91 (br, s, 1H), 0.99 (d, *J* = 6.7 Hz, 3H), 0.79 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 128.1, 127.4, 126.5, 80.0, 35.2, 19.0, 18.2.

6.1.18 Cyclohexyl(phenyl)methanol (b25, Table 3)^{6b}

92% yield, colorless oil, Mp: 39 - 40 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (ddt, *J* = 14.9, 12.2, 7.3 Hz, 5H), 4.30 (d, *J* = 7.2 Hz, 1H), 2.16 (br, s, 1H), 1.98 – 1.92 (m, 1H), 1.74 (dt, *J* = 12.2, 3.1 Hz, 1H), 1.61 (ddd, *J* = 11.6, 5.9, 3.0 Hz, 2H), 1.39 – 1.31 (m, 1H), 1.24 – 1.18 (m, 1H), 1.17 – 1.10 (m, 2H), 1.06 – 0.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 128.1, 127.3, 126.6, 79.3, 44.9, 29.3, 28.8, 26.4, 26.1, 26.0.

6.1.19 1-(Naphthalen-2-yl)ethan-1-ol (b28, Table 3)⁶

93% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.86 (m, 4H), 7.57-7.51 (m, 3H),5.12 (q, J = 6.4 Hz, 1H), 1.90 (brs, 1H), 1.64 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 133.3, 132.9, 128.3, 127.9, 127.7, 126.1, 125.8, 123.8, 123.8, 70.5, 25.1.

6.1.20 1,2,3,4-tetrahydronaphthalen-1-ol (b31, Table 3)⁷

72% yield, yellow oil.¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 5.6, 3.6 Hz, 1H), 7.13 (dt, *J* = 7.4, 3.6 Hz, 2H), 7.04 (dd, *J* = 5.5, 3.6 Hz, 1H), 4.66 (t, *J* = 4.6 Hz, 1H), 2.76 (dt, *J* = 17.1, 5.6 Hz, 1H), 2.66 (ddd, *J* = 16.8, 7.9, 5.4 Hz, 1H), 2.47 (s, 1H), 1.90 (dddd, *J* = 12.0, 9.5, 6.2, 3.6 Hz, 2H), 1.80 (ddt, *J* = 11.4, 7.6, 3.8 Hz, 1H), 1.76 – 1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 137.1, 128.9, 128.7, 127.5, 126.1, 68.0, 32.3, 29.3, 18.9.

6.1.21 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-ol (b32, Table 3)⁷

94% yield, white solid, Mp: 99 - 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.4 Hz, 1H), 7.19 (dtd, *J* = 20.4, 7.4, 1.4 Hz, 2H), 7.11 (d, *J* = 7.3 Hz, 1H), 4.94 – 4.90 (m, 1H), 2.94 (dd, *J* = 14.2, 8.2 Hz, 1H), 2.78 – 2.66 (m, 1H), 2.11 – 2.02 (m, 2H), 1.96 (t, *J* = 8.0 Hz, 1H), 1.83 – 1.78 (m, 2H), 1.57 – 1.42 (m, 1H);¹³C NMR (100 MHz, CDCl₃) δ 144.3, 140.8, 129.5, 126.9, 126.1, 124.6, 74.0, 36.6, 35.7, 27.8, 27.6.

6.1.22 5,6,7,8-Tetrahydroquinolin-8-ol (**b33**, Table 3)⁵

88% yield, pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 4.6 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.07 (dd, J = 7.5, 4.9 Hz, 1H), 4.71 (dd, J = 7.5, 5.5 Hz, 1H), 4.44 (br, 1H, OH), 2.83 – 2.70 (m, 2H), 2.26 – 2.12 (m, 1H), 2.03 – 1.91 (m, 1H), 1.88 – 1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 146.6, 137.1, 131.9, 122.4, 68.4, 30.9, 28.4, 19.2.

6.1.23 1-(Thiophen-2-yl)ethan-1-ol (b37, Table 3)⁶

78% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.28 (m, 1H), 7.03-7.00 (m, 2H), 5.18 (q, J = 6.4 Hz, 1H), 2.11 (brs, 1H), 1.65 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 141.9, 110.1, 105.1, 63.5, 21.2.
6.1.24 4-Phenylcyclohexan-1-ol (b44, entry 6, Table 4)⁸

ОН-

85% yield, white solid, Mp: 116 - 117°C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.18 (dd, *J* = 9.0, 7.4 Hz, 3H), 3.68 (tt, *J* = 10.5, 4.4 Hz, 1H), 2.49 (tt, *J* = 12.0, 3.5 Hz, 1H), 2.13 – 2.06 (m, 2H), 1.97 – 1.91 (m, 2H), 1.54 (dd, *J* = 12.2, 3.0 Hz, 2H), 1.49 – 1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 128.3, 126.7, 126.0, 70.6, 43.4, 35.9, 32.4, 27.7.

6.1.25 Quinuclidin-3-ol (b48, entry 10, Table 4) 9

C

60% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 4.40 (s, 1H), 3.78 (dt, *J* = 7.9, 3.6 Hz, 1H), 3.05 (ddd, *J* = 14.1, 8.3, 2.3 Hz, 1H), 2.85 (ddd, *J* = 10.5, 5.7, 2.6 Hz, 1H), 2.72 (ddq, *J* = 10.3, 7.7, 2.8 Hz, 2H), 2.65 – 2.49 (m, 2H), 1.95 (tdd, *J* = 10.3, 5.1, 2.4 Hz, 1H), 1.78 (q, *J* = 3.3 Hz, 1H), 1.66 (tt, *J* = 9.5, 4.7 Hz, 1H), 1.46 (dddd, *J* = 13.3, 10.4, 5.7, 2.9 Hz, 1H), 1.39 – 1.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 67.0, 57.6, 47.1, 46.1, 28.1, 24.6, 18.7.

6.1.26 1-Phenylhexan-3-ol (**b50**, entry 12, Table 4)¹⁰

90% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.5 Hz, 2H), 7.21 – 7.12 (m, 3H), 3.60 (ddd, *J* = 9.4, 7.4, 4.7 Hz, 1H), 2.77 (ddd, *J* = 13.8, 9.7, 5.9 Hz, 1H), 2.64 (ddd, *J* = 13.8, 9.7, 6.7 Hz, 1H), 2.13 (br, s, 1H), 1.82 – 1.64 (m, 2H), 1.44 (dd, *J* = 5.8, 3.8 Hz, 2H), 1.34 (td, *J* = 7.4, 7.0, 2.9 Hz, 1H), 0.91 (t, *J* = 6.8 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 142.37, 128.47, 128.43, 125.80, 71.08, 39.78, 39.14, 32.12, 18.87, 14.17.

6.1.27 Benzyl alcohol (d1, entry 1, Table 5)³

85% yield, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.22 (m, 5H), 4.67 (s, 2H), 2.66 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.8, 128.5, 127.6, 127.0, 65.1

6.1.28 4-Methylbenzyl alcohol (d2, entry 2, Table 5)³

95% yield, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, *J*=8.1 Hz, 2H), 7.19 (d, *J*=7.9 Hz, 2H), 4.65 (s, 2H), 2.37 (s, 3H), 1.87 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 137.3, 129.2, 127.1, 65.2, 21.1.

6.1.29 4-Methoxybenzyl alcohol (d3, entry 3, Table 5).³

OH H H

81% yield, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ7.31 (d, *J*=8.7 Hz, 2H), 6.92 (d, *J*=8.4 Hz, 2H), 4.63 (s, 2H), 3.83 (s, 3H), 1.76 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 133.2, 128.6, 113.9, 64.7, 55.2.

6.1.30 4-Fluorobenzyl alcohol (d4, entry 4, Table 5).³

OH F d4

94% yield, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (m, 2H), 7.07 (m, 2H), 4.68 (s, 2H), 1.79 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.2 (d, J_{C-F} = 245.4 Hz), 136.5 (d, J_{C-F} =3.1 Hz), 128.7 (d, J_{C-F} = 8.1 Hz), 115.3 (d, J_{C-F} = 21.1 Hz), 64.2.

6.1.31 Naphthalen-2-ylmethanol (d5, entry 5, Table 5)¹¹

ОН

95% yield, white solid, Mp: 80 – 81 °C ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dt, *J* = 8.9, 4.9 Hz, 3H), 7.74 (s, 1H), 7.43 (ddd, *J* = 10.0, 8.0, 3.1 Hz, 3H), 4.78 (s, 2H), 2.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 133.4, 132.9, 128.3, 127.9, 127.7, 126.2, 125.9, 125.4, 125.2, 65.4.

6.1.32 thiophen-2-ylmethanol (d7, entry 7, Table 5)¹²

С ОН

93% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, *J* = 4.4, 1.9 Hz, 1H), 6.93 (d, *J* = 4.6 Hz, 2H), 4.71 (s, 2H), 3.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 126.8, 125.4, 125.4, 59.6.

6.1.33 1-(furan-2-yl)ethan-1-ol (d8, entry 8, Table 5)12

82% yield, colorless oil.¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 1.0 Hz, 1H), 6.32 (dd, *J* = 3.3, 1.9 Hz, 1H), 6.26 (d, *J* = 3.2 Hz, 1H), 5.04 (s, 1H), 4.55 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 143.2, 110.3, 107.5, 57.2.

6.2. NMR spectra for selected alcohol products

Figure S26 1 H and 13 C NMR spectra of 1-phenylethanol in CDCl₃

Figure S27 ¹H and ¹³C NMR spectra of 1-(4-fluorophenyl)ethan-1-ol in CDCl₃

Figure S28 1 H and 13 C NMR spectra of 1-(4-chlorophenyl)ethan-1-ol in CDCl₃

Figure S29 1 H and 13 C NMR spectra of 1-(4-bromophenyl)ethan-1-ol in CDCl₃

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1 fl (zea)

Figure S30 1 H and 13 C NMR spectra of 1-(p-tolyl)ethan-1-ol in CDCl₃

Figure S33 ¹H and ¹³C NMR spectra of 1-(3-bromophenyl)ethan-1-ol in CDCl₃

Figure S34 ¹H and ¹³C NMR spectra of 1-(2-chlorophenyl)ethan-1-ol in CDCl₃

Figure S35 ¹H and ¹³C NMR spectra of 1-(1-tolyl)ethan-1-ol in CDCl₃

Figure S36 ¹H and ¹³C NMR spectra of 1-(2,4-dichlorophenyl)ethan-1-ol in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S39 ¹H and ¹³C NMR spectra of 1-(p-tolyl)propan-1-ol in CDCl₃

Figure S41 ¹H and ¹³C NMR spectra of 1-phenylbutan-1-ol in CDCl₃

Figure S42 ¹H and ¹³C NMR spectra of 2-methyl-1-phenylpropan-1-ol in CDCl₃

Figure S43 ¹H and ¹³C NMR spectra of cyclohexyl(phenyl)methanol in CDCl₃

Figure S44 ¹H and ¹³C NMR spectra of 1-(naphthalen-2-yl)ethan-1-ol in CDCl₃

Figure S45 ¹H and ¹³C NMR spectra of 1,2,3,4-tetrahydronaphthalen-1-ol in CDCl₃

Figure S46 ¹H and ¹³C NMR spectra of 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-ol in CDCl₃

7.45 7.45 7.22 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	4.94 4.93 4.91	2.296 2.294 2.75 2.75 2.75 2.69 2.73 2.69	22.10 22.00 20.00 22.00 20.000 20.000 20.000 20.000 20.0000 20.0000 20.00000000
	\checkmark	The second se	

80 70 60 50 40 30 20 10 0 -10

Figure S48 ¹H and ¹³C NMR spectra of 5,6,7,8-tetrahydroquinolin-8-ol in CDCl₃

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S49 ¹H and ¹³C NMR spectra of 4-phenylcyclohexan-1-ol in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S50 ¹H and ¹³C NMR spectra of quinuclidin-3-ol in CDCl₃

Figure S51 ¹H and ¹³C NMR spectra of 4-phenylcyclohexan-1-ol in CDCl₃

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 f1 (ppm) Figure S53 ¹H and ¹³C NMR spectra of *p*-tolylmethanol in CDCl₃

S66

Figure S54 ¹H and ¹³C NMR spectra of (4-methoxyphenyl)methanol in CDCl₃

Figure S56 ¹H and ¹³C NMR spectra of naphthalen-2-ylmethanol in CDCl₃

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

S71

7. References

- 1. B. Pan, B. Liu, E. Yue, Q. Liu, X. Yang, Z. Wang, W.-H. Sun, ACS Catal. 2016, 6, 1247-1253.
- (a) Z. Wang, Q. Lin, N. Ma, S. Liu, M. Han, X. Yan, Q. Liu, G. A. Solan, W. -H. Sun, *Catal. Sci. Technol.* 2021, **11**, 8026–8036; (b) F. Cao, Y. Wang, X. Wang, W. Zhang, G. A. Solan, R. Wang, Y. Ma, X. Hao, W.-H. Sun, *Catal. Sci. Technol.*, 2022, **12**, 6687-6703; (c) R. P. Thummel, V. Hegde. *J. Org. Chem*, 1989, **54**, 7, 1720–1725.
- Z. Wang, X. Chen, B. Liu, Q. Liu, G. A. Solan, X. Yang, W.-H. Sun, Catal. Sci. Technol., 2017, 7, 1297-1304.
- 4. J. Yang, L. Yao, Z. Wang, Z. Zuo, S. Liu, P. Gao, M. Han, Q. Liu, G. A. Solan, W.-H. Sun, *J. Catal.* 2023, **418**, 40-50.
- (a) Q. Zhang, W. Zhang, N. M. Rajendran, T. Liang, W.-H. Sun, *Dalton Trans.* 2017, 46, 7833; (b)
 Y. Lebedev, I. Polishchuk, B. Maity, M. Dinis Veloso Guerreiro, L. Cavallo, M. Rueping, *J Am Chem Soc* 2019, 141, 19415-19423.
- (a) A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, *Org. Lett.*, 2017, **19**, 3656-3659; (b) L. Zeng, H. Yang, M. Zhao, J. Wen, J. H. R. Tucker and X. Zhang, *ACS Catal.*, 2020, **10**, 13794-13799; (c) J. Yang, L. Yao, Z. Wang, Z. Zuo, S. Liu, P. Gao, M. Han, Q. Liu, G. A. Solan, W.-H. Sun, J. Catal. 2023, 418, 40-50; (d) L. Wang, J. Lin, Q. Sun, C. Xia, W. Sun, *ACS Catal.* 2021, 11, 8033-8041; (e) R. Wang, X. Han, J. Xu, P. Liu and F. Li, *J. Org. Chem.*, 2020, **85**, 2242-2249
- 7. C. L. Oates, A. S. Goodfellow, M. Buhl and M. L. Clarke, *Angew. Chem. Int. Ed.*, 2023, **62**, e202212479.
- 8. V. Soulard, G. Villa, D. P. Vollmar and P. Renaud, J. Am. Chem. Soc., 2018, 140, 155-158.
- 9. G. N. Trinadhachari, A. G. Kamat, B. Venkata Balaji, K. J. Prabahar, K. M. Naidu, K. R. Babu and P. D. Sanasi, *Org. Process Res. Dev.*, 2014, **18**, 934-940.
- 10. L. Shi, Y. Q. Tu, M. Wang, F. M. Zhang, C. A. Fan, Y. M. Zhao and W. J. Xia, *J. Am. Chem. Soc.*, 2005, **127**, 10836-10837.
- 11. Q. Yu, D. Zhou, Y. Liu, X. Huang, C. Song, J. Ma and J. Li, Org. Lett., 2023, 25, 47-52
- M. Glatz, B. Stoger, D. Himmelbauer, L. F. Veiros and K. Kirchner, ACS Catal., 2018, 8, 4009-4016