Structural Dynamics of a Thermally Silent Fe^{II} Spin Crossover Defect-Grid Complex

Jose de Jesus Velazquez-Garcia^a*, Krishnayan Basuroy^a, Darina Storozhuk^a, Joanne Wong^b, Serhiy Demeshko^b, Franc Meyer^b, Robert Henning^c and Simone Techert^{ad}

^aPhoton Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, 22607, Germany

^bInstitut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, 37077, Germany

^cCenter for Advanced Radiation Sources, The University of Chicago, Argonne National Laboratory, 9700 South Cass Ave, Lemont, Illinois, 90439, USA

^dInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany

Characterization

Table S1. Crystal data and structure-refinement parameters of FE3 at 100K.

Temperature	100K
Empirical Formula	C100 H74 B4 F16 Fe3 N28
Crystal colour/habit	Black/block
Crystal size (mm)	(0.090x0.050x0.030)
Crystallizing solvent	Acetonitrile
Crystal system/ Space group	Triclinic/ P-1
a (Å)	14.010 (3)
b (Å)	14.480 (3)
<i>c</i> (Å)	24.320 (5)
α (°)	91.520 (3)
β (°)	95.920 (3)
γ (°)	107.67 (3)
Volume (ų)	4467.1 (18)
Ζ/Ζ'	2/1
Molecular Weight	2182.66
Calculated density (g/cm3)	1.553
F(000)	2224.0
Radiation	Synchrotron (λ=0. 61990 Å)
θ range (°)	1.290/22.648
Scan type	φ
Measured reflections	62278
Unique reflections	16815
Observed reflections	16189
[F > 4ơ(F)]	
Final R (%)	5 31
MP2 (%)	14 84
WN2 (70) Good-of-fit on $F^2(S)$	1 0/9
$\Delta \alpha \max \left(e_{-} \hat{\Delta}^{-3} \right)$	2.05
$\Delta \rho \min (\rho \Delta^{-3})$	-0.94
No of restrains /narameters	208/1/83
Data $[E > A_{\sigma}(E)]$ -to-parameter ratio	10 92.1
	10.92.1

Bond	lengths (Å)	Bond angles (°)			
Fe(A)-N1	1.979 (2)	N8-Fe(A)-N7	79.84 (8)	N21-Fe(B)-N16	96.55 (9)
Fe(A)-N2	1.908 (2)	N8-Fe(A)-N1	98.53 (9)	N21-Fe(B)-N18	88.06 (9)
Fe(A)-N3	1.973 (2)	N8-Fe(A)-N2	174.26 (8)	N21-Fe(B)-N19	160.73 (10)
Fe(A)-N7	2.003 (2)	N8-Fe(A)-N3	101.05 (9)	N20-Fe(B)-N16	105.16 (10)
Fe(A)-N8	1.907 (2)	N8-Fe(A)-N9	79.95 (8)	N20-Fe(B)-N18	94.64 (10)
Fe(A)-N9	2.026 (2)	N7-Fe(A)-N9	159.78 (8)	N20-Fe(B)-N17	174.42 (10)
Fe(B)-N16	2.003 (2)	N1-Fe(A)-N7	94.64 (9)	N20-Fe(B)-N19	81.02 (11)
Fe(B)-N17	1.908 (2)	N1-Fe(A)-N9	87.70 (9)	N20-Fe(B)-N21	79.77 (10)
Fe(B)-N18	2.001 (2)	N2-Fe(A)-N7	94.52 (8)	N14-Fe(C)-N15	77.19 (9)
Fe(B)-N19	1.981 (2)	N2-Fe(A)-N1	80.70 (9)	N14-Fe(C)-N10	121.04 (8)
Fe(B)-N20	1.889 (2)	N2-Fe(A)-N3	79.71 (9)	N14-Fe(C)-N12	88.09 (8)
Fe(B)-N21	1.974 (2)	N2-Fe(A)-N9	105.66 (8)	N14-Fe(C)-N13	72.79 (9)
Fe(C)-N10	2.149 (2)	N3-Fe(A)-N7	87.79 (9)	N15-Fe(C)-N10	101.77 (8)
Fe(C)-N11	2.115 (2)	N3-Fe(A)-N1	160.39 (8)	N15-Fe(C)-N12	91.47 (9)
Fe(C)-N12	2.268 (2)	N3-Fe(A)-N9	96.73 (8)	N15-Fe(C)-N13	149.83 (8)
Fe(C)-N13	2.298 (2)	N18-Fe(B)-N16	160.16 (10)	N11-Fe(C)-N14	150.64 (9)
Fe(C)-N14	2.122 (2)	N17-Fe(B)-N16	80.34 (10)	N11-Fe(C)-N15	124.20 (8)
Fe(C)-N15	2.146 (3)	N17-Fe(B)-N18	79.84 (11)	N11-Fe(C)-N10	77.38 (8)
		N17-Fe(B)-N19	98.54 (10)	N11-Fe(C)-N12	72.81 (8)
		N17-Fe(B)-N21	100.73 (9)	N11-Fe(C)-N13	85.01 (8)
		N19-Fe(B)-N16	86.94 (9)	N10-Fe(C)-N12	149.87 (8)
		N19-Fe(B)-N18	95.05 (9)	N10-Fe(C)-N13	91.23 (9)
				N12-Fe(C)-N13	90.50 (9)

Table S2. Selected bond lengths and bond angles for compound FE3 at 100K.

Figure S1. Asymmetric unit of the FE3 grid at 100K. Hydrogen atoms are omitted for clarity.

Figure S2. Thermal ellipsoid plot (50% of probability) for **FE3** at 100K. Hydrogen atoms are omitted for clarity.

Figure S3. Packing of molecules down crystallographic 'a' axis. Hydrogen atoms are omitted for clarity.

Figure S4. Packing of molecules down crystallographic 'b' axis. Hydrogen atoms are omitted for clarity.

Figure S5. Packing of molecules down crystallographic 'c' axis. Hydrogen atoms are omitted for clarity.

Figure S6. Thermal ellipsoid plot (50% of probability) for **FE3** for the -500ps data. Hydrogen atoms are omitted for clarity.

Figure S7. Thermal ellipsoid plot (50% of probability) for **FE3** for the 200pss data. Hydrogen atoms are omitted for clarity.

Figure S8. Thermal ellipsoid plot (50% of probability) for **FE3** for the 500ps data. Hydrogen atoms are omitted for clarity.

Figure S9. Thermal ellipsoid plot (50% of probability) for **FE3** for the 800ps data. Hydrogen atoms are omitted for clarity.

Figure S10. Thermal ellipsoid plot (50% of probability) for **FE3** for the 1ns data. Hydrogen atoms are omitted for clarity.

Structural Analysis

The Octadist program¹ was used to determine the $\langle \text{Fe-N} \rangle$ bond length and the angular distortion parameter that describes the octahedral coordination environment of the metal centres in the **FE3** grid. The angular distortion parameter, Θ , is the sum of the deviations from 60° of the 24 N-Fe-N angles, six per pseudo three-fold axis, measured on a projection of opposite triangular faces of the {FeN₆} octahedron, orientated by superimposing the face centroids (Figure S1).^{2,3}

Figure S11. Environment of Fe^{II} ions and definition of the θ angle and the angular distortion parameter (Θ).^{2,3}

For comparison, continuous shape measurements (CShM) were also used to characterise the relative deviation of the metal coordination spheres in **FE3** from ideal polyhedra described by a particular point symmetry group (Table S2).⁴ Mathematically, CShM of the coordination polyhedron Q with the geometric centre $\vec{q_0}$ relative to an ideal polyhedron P is expressed as:

$$S_{Q} = min \left[\frac{\sum_{i=1}^{N} |\vec{q}_{i} - \vec{p}_{i}|^{2}}{\sum_{i=1}^{N} |\vec{q}_{i} - \vec{q}_{0}|^{2}} \right] \times 100$$
(S1)

where \vec{q}_i and \vec{p}_i are the position vectors for atoms of two polyhedra. CShM relative to an ideal octahedron (S(Oh)) and an ideal trigonal prism (S(itp)) were calculated using the SHAPE program.⁵ The calculation of S(Oh) and S(itp) were performed for all crystallographic-symmetry independent metal atoms.

It is well known that the {FeN₆} coordination sphere of LS Fe^{II} ions is more regular, i.e., closer to an ideal octahedron. Therefore, the S(Oh) parameter is small and closer to 0, while the parameter S(itp) >> 0. Contrarily, Fe^{II} ions in the HS state are characterised by a more irregular structure with structural parameters S(Oh) >> 0 and S(itp) closer to zero.

Estimate of Temperature Difference

A method for estimating the temperature difference between two different data sets collected at different temperatures is obtained from temperature-Wilson plots. The plots are obtained by a scale-factor refinement of the low temperature data (100K) with the high-temperature data (310K) structural model and plotting the $\ln(I^{100K}/I^{310K})$. The slope of the dependence of $\ln(I^{100K}/I^{310K})$ with $(\sin\theta/\lambda)^2$ gives the overall increase of isotropic atomic motion, ΔB (equation S2), which is associated with temperature difference between the data sets.⁶

$$ln\left(\frac{I^{100K}}{I^{310K}}\right) = -2\Delta B^{100K-310K}(\sin\theta/\lambda)^{2}$$
(S2)

An analogous equation is used to calculate the temperature increase during the photo-crystallographic experiments. The energy deposited by the laser pulse largely exceeds the energy necessary for the LS to HS transition, which results in some heat diffusion and global warming. A modified Wilson plot, known as a photoWilson plot (Fig. S12), is then used to estimate the laser-induced temperature increase due to heat dissipation, in a similar way as described above for the temperature-Wilson plots. From the photoWilson plot, it is possible to calculate the variation of the isotropic temperature factor $(\Delta B)^6$:

$$ln\left(\frac{I^{dt}}{I^{dt<0}}\right) = -2\Delta B^{dt-dt<0}(\sin\theta/\lambda)^2$$
(S3)

where I_{ON} and I_{OFF} are the laser-ON and laser-OFF intensities. Note that, in both cases, intensities must be brought to the same scale before calculating the value of ΔB .

Figure S12. PhotoWilson plots of FE3.

Distortion

Figure S13. Molecular representation of the $[Fe_3L_4]^{4+}$ grid at different temperatures, showing the rotation of the pyridine ring and the nearest acetonitrile molecule refined as disordered over two positions.

Structural Details

Structural	100K	250K	310K
parameter		$F_{\theta}(A)$	
<fe-n>(Å)</fe-n>	1 966 (2)	1 968 (2)	1 974 (2)
S(Oh)	2 256	2 290	2 332
S(itn)	11 159	11.060	10 968
$\Sigma(np)$	95.44	93.89	95.12
$\Delta()$	306.06	310.54	313 53
۵() ۲(Å)	0.234	0 232	0.231
S(A) Vn (Å3)	0.234	0.232	0.251
v p(A [*])	7.//1	5.191 Fe(R)	9.877
<fe-n>(Å)</fe-n>	1 959 (2)	1 964 (2)	1 968 (3)
S(Ob)	2 183	2 108	2 284
S(itn)	11 201	2.198	10 904
S(np)	04.70	02.75	02.71
$\Delta()$	94.70	92.73	95./1
() () ()	301.94	302.60	510.47
$\zeta(A)$	0.243	0.242	0.220
$Vp(A^3)$	9.68/	9.750	9.802
$\langle E_2 N \rangle (\hat{\lambda})$	2 192 (2)	$\frac{Fe(C)}{2.187(2)}$	2 199 (2)
< re-N > (A)	2.183 (2)	2.18/(2)	2.188 (3)
S(On)	6.140	0.130	0.100
S(hp)	0.4/3	0.572	0.495
$\Sigma(^{\circ})$	146.93	146.36	145.31
$\Theta(\tilde{c})$	577.25	576.38	5/5./1
ζ (A)	0.401	0.396	0.394
$Vp(A^3)$	12.285	12.356	12.388
F()		1 1 0 1	
F()		olecular Scale	
Superposition of structures	<u>Ma</u> 100K (blue) & 250 K	olecular Scale (red)	100K (blue) & 310 K (red)
Superposition of structures	<u>Ма</u> 100К (blue) & 250 К	olecular Scale (red)	100K (blue) & 310 K (red)
Superposition of structures Maximum RMSD	<u>Ма</u> 100К (blue) & 250 К Собрание и собрание и собрание и собрание и 1.1862	olecular Scale (red)	100K (blue) & 310 K (red)
Superposition of structures Maximum RMSD Average	<u>Ма</u> 100К (blue) & 250 К	olecular Scale (red)	100K (blue) & 310 K (red)
Superposition of structures Maximum RMSD Average RMSD	Ma 100K (blue) & 250 K	olecular Scale (red)	100K (blue) & 310 K (red)
Superposition of structures Maximum RMSD Average RMSD	Ма 100К (blue) & 250 К Собрание и Собрание	it cell Changes	100K (blue) & 310 K (red) 100K (blue) & 310 K (red) 0.8101 0.1965
Maximum RMSD Average RMSD	Ма 100К (blue) & 250 К	<i>it cell Changes</i> 14.150 (3)	100K (blue) & 310 K (red) 100K (blue) & 310 K (red) 0.8101 0.1965 14.240 (3) 14.620 (2)
Superposition of structures Maximum RMSD Average RMSD a (Å) b (Å)	<u>Ма</u> 100К (blue) & 250 К 100К (blue) & 250 К 100К (blue) & 250 К 11862 0.1925 <u>Una</u> 14.010 (3) 14.480 (3) 24.290 (5)	<i>it cell Changes</i> 14.150 (3) 14.590 (3)	100K (blue) & 310 K (red) 100K (blue) & 310 K (red) 0.8101 0.1965 14.240 (3) 14.630 (3) 24.95 (5)
Superposition of structures Maximum RMSD Average RMSD <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å)	<u>Ма</u> 100К (blue) & 250 К 100К (blue) & 250 К 100К (blue) & 250 К 11862 0.1925 <u>Uni</u> 14.010 (3) 14.480 (3) 24.320 (5) (10)	it cell Changes 14.150 (3) 14.590 (3) 24.710 (5)	100K (blue) & 310 K (red) 100K (blue) & 310 K (red) 0.8101 0.1965 14.240 (3) 14.630 (3) 24.860 (5) (10)
Maximum RMSD Average RMSD <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å) V (Å ³)	<u>Ма</u> 100К (blue) & 250 К 100К (blue) & 250 К 100К (blue) & 250 К 100К (blue) & 250 К 11862 0.1925 <u>Una</u> 14.010 (3) 14.480 (3) 24.320 (5) 4667.1 (18)	it cell Changes 14.150 (3) 14.590 (3) 24.710 (5) 4797.6 (19)	100K (blue) & 310 K (red) 100K (blue) & 310 K (red) 0.8101 0.1965 14.240 (3) 14.630 (3) 24.860 (5) 4863.8 (19)

Table S3. Structural data that provides a basic description of the SCO in FE3.

$$\begin{split} \Sigma = \Sigma^{12}_{i=1} & |90 - \phi_i|, \text{ the sum of the angular deviations from } 90^{\circ} \text{ for the 12 cis angles } (\phi_i)^{7,8}, \ \Theta = \Sigma^{24}_{i=1} & |60 - \theta_i|^2, \\ \zeta = & (\text{Fe-N}_i) - \langle \text{Fe-N} \rangle^9. \text{ Information about } \Theta, \text{ S(Oh) and S(itp) is provided in the structural analysis section.} \end{split}$$

References

- 1 R. Ketkaew, Y. Tantirungrotechai, P. Harding, G. Chastanet, P. Guionneau, M. Marchivie and D. J. Harding, *Dalton Trans*, 2021, **50**, 1086–1096.
- 2 M. Marchivie, P. Guionneau, J.-F. Létard and D. Chasseau, Acta Crystallogr. B, 2005, 61, 25-28.
- 3 M. Marchivie, P. Guionneau, J.-F. Létard and D. Chasseau, *Acta Crystallogr. B*, 2003, **59**, 479–486.
- 4 H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc., 1992, 114, 7843-7851.
- 5 M. Llunell, D. Casanova, J. Cirera, P. Alemany and S. Alvarez, *SHAPE program, version 2.1*, Barcelona, 2003.
- 6 M. S. Schmøkel, R. Kamiński, J. B. Benedict and P. Coppens, Acta Crystallogr. A, 2010, 66, 632– 636.
- 7 P. Guionneau, M. Marchivie, G. Bravic, J.-F. Létard and D. Chasseau, in *Spin Crossover in Transition Metal Compounds II*, eds. P. Gütlich and H. A. Goodwin, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 97–128.
- 8 M. A. Halcrow, Chem. Soc. Rev., 2011, 40, 4119.
- 9 M. Buron-Le Cointe, J. Hébert, C. Baldé, N. Moisan, L. Toupet, P. Guionneau, J. F. Létard, E. Freysz, H. Cailleau and E. Collet, *Phys. Rev. B*, DOI:10.1103/PhysRevB.85.064114.