Supporting Figure Captions

Figure S1. STEM-EDS spectrum with EDS mapping of Cu, Nb and O elements for 1wt% Cu/r-Nb₂O₅ sample.

Figure S2. STEM-EDS spectrum with EDS mapping of Cu, Nb and O elements for 3wt% Cu/r-Nb₂O₅ sample.

Figure S3. STEM-EDS spectrum with EDS mapping of Cu, Nb and O elements for 5wt% Cu/r-Nb₂O₅ sample.

Figure S4. BET surface area of (A) pure Nb₂O₅, (B) r-Nb₂O₅ and (C) 2wt% Cu/r-Nb₂O₅ nanosheets.

Figure S5. The amount of photocatalytic products (H₂, CO & CH₄) evolved during CO₂ reduction for of pure Nb₂O₅, r-Nb₂O₅, 1wt% Cu/r-Nb₂O₅, 2wt% Cu/r-Nb₂O₅, 3wt% Cu/r-Nb₂O₅, 5wt% Cu/r-Nb₂O₅ and 2wt% Cu/Nb₂O₅ nanosheets.

Figure S6. Summary of Mott-Schottky results with flat band potential and charge carrier density.

Table TS1. Atomic weight% of Cu, Nb and O elements obtained from STEM-EDS analysis.

Table TS2. The obtained CO₂ selectivity for Nb₂O₅, reduced Nb₂O₅, 1wt% Cu/r-Nb₂O₅, 2wt% Cu/r-Nb₂O₅, 3wt% Cu/r-Nb₂O₅, 5wt% Cu/r-Nb₂O₅ and 2wt% Cu/Nb₂O₅ nanosheets.

Table TS3. Photocatalytic CO₂ reduction performance of present nanostructures compared to the Vanadate based photocatalyst with the reported photocatalysts.

Table TS4. Results obtained after CO₂ reduction tests for 10 consecutive cycles.

Table TS5. Summary of TRPL results for pure Nb₂O₅, r-Nb₂O₅ and 2wt% Cu/r-Nb₂O₅ nanosheets.

Formula for charge carrier density (ND)

$$N_{\rm D} = (2/e_0 \varepsilon \varepsilon_0) / [d(1/C^2)/dV]$$

where e_0 =electron charge, ϵ = dielectric constant of Nb₂O₅ (77) and V = applied potential

Figure S1

Figure S2

Figure S3

Figure S4(A to C)

Figure S5

Figure S6

Samula Nama	Cu	Nb	0
Sample Name	(Atomic %)	(Atomic %)	(Atomic %)
Nb ₂ O ₅	-	55.39	44.61
r-Nb ₂ O ₅	-	73.57	26.43
1wt% Cu/r-Nb ₂ O ₅	0.94	56.29	42.77
2wt% Cu/r-Nb ₂ O ₅	1.75	58.85	39.40
3wt% Cu/r-Nb ₂ O ₅	6.62	49.03	44.35
5wt% Cu/r-Nb ₂ O ₅	15.93	46.57	37.50

Table 1	ГS1
---------	-----

Sr.	Sample Name	H ₂	CO	CH ₄	Selectivity
No.		(mmol/g)	(mmol/g)	(mmol/g)	(%) S _{CO2}
1	Nb ₂ O ₅	0.039	0.092	0.039	86
2	r-Nb ₂ O ₅	0.095	0.216	0.092	86
3	1wt% Cu/r-Nb ₂ O ₅	0.272	0.475	0.261	85
4	2wt% Cu/r-Nb ₂ O ₅	0.344	0.908	0.504	89
5	3wt% Cu/r-Nb ₂ O ₅	0.201	0.490	0.245	88
6	5wt% Cu/r-Nb ₂ O ₅	0.121	0.179	0.098	83
7	2wt% Cu/Nb ₂ O ₅	0.087	0.0192	0.091	86

Table TS2

Sr.	Catalyst Name	Products	Experimental details	Referen
No.		(mmol g ⁻¹)		ce no.
1	0.51wt% Cu/Nb ₂ O ₅	CO: 0.199, CH ₄ :	Catalyst amount: 0.1g, 6 UV	30
		0.419	lamps of 15 W	
2	Nb ₂ O ₅ /g-C ₃ N ₄	CO: 0.343, CH ₄ :	Catalyst amount: 0.03g	34
		0.041	300 W Xe lamp	
3	SiO ₂ -HNb ₃ O ₈	CH ₄ : 0.004	Catalyst amount: 0.1g, 0.4	56
			wt % Pt	
			350 W Xe lamp, 34.8 mW cm ⁻²	
4	g-C ₃ N ₄ /NaNbO ₃	CH4: 0.024	Catalyst amount: 0.05g + 0.5	57
			wt % Pt 300-W Xe lamp,	
			UV cutoff filter ($\lambda > 420$ nm).	
5	10wt% Cu/Nb ₂ O ₅	CH ₄ : 0.048,	Catalyst amount: 0.3g	58
		HCOOH: 0.074	UVC lamp (OSRAM 11 W)	
		CH ₃ COOH:	21.49 mW·cm ⁻²	
		0.007		
6	Nb ₂ O ₅ nanofibers	CO: 0.008,	Sample glass slide (2x2 cm)	59
		CH4: 0.005	18 W mercury lamp, 254 nm	
7	Bi ₂ O ₂ (OH)(NO ₃)/Nb ₂ O ₅	CO: 0.016,	UV-C irradiation (Philips 18 W	60
		C ₂ H ₄ : 0.006	mercury)	
8	Nb ₂ O ₅	H ₂ :0.039;		
		CO:0.092;		
		CH4:0.039		
	r-Nb ₂ O ₅	H ₂ :0.095;	Nanostructure grown on FTO	Duccont
		CO:0.216;	substrate (4 cm x 2 cm)	rresent
		CH4:0.092	300 W Xenon lamp	work
	2wt% Cu/r-Nb ₂ O ₅	H ₂ :0.344;		
		CO:0.908;		
		CH4:0.503		

Table TS3

Cycle	H ₂ (mmol/g)	CO (mmol/g)	CH ₄ (mmol/g)	Selectivity (%)
number				$\mathbf{S}_{\mathbf{CO2}}$
1	0.344	0.908	0.504	89
2	0.374	0.930	0.493	88
3	0.314	0.938	0.460	89
4	0.330	0.910	0.405	88
5	0.287	0.923	0.422	90
6	0.389	0.968	0.425	87
7	0.371	0.938	0.506	89
8	0.321	0.909	0.480	89
9	0.290	0.799	0.481	90
10	0.256	0.622	0.313	88

Table TS4

Sample Name	τ1	τ2	B 1	B2	Average carrier
					life time τ (ns)
Nb ₂ O ₅	0.10	0.35	11	3.9	0.23
r-Nb ₂ O ₅	0.14	0.41	12	3.3	0.26
2wt% Cu/r-Nb ₂ O ₅	0.29	3	9.7	1.1	1.75

Table TS5