Photomechanical Effects Based on a One-dimensional Zn

Coordination Polymer Driven by [4+4] Cycloaddition

Reactions

Yanlin Chen, ^b Chunjiao Yu, ^a Xiaotong Zhu, ^a and Qi Yu ^{*a}

^a College of Chemistry and Chemical Engineering Qingdao University Shandong 266071, People's Republic of China. E-mail: <u>yuqi@qdu.edu.cn</u>

^b Shandong Provincial Key Laboratory of Molecular Engineering, College of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, People's Republic of China

Experimental Details

Materials and general method

All chemicals purchased were reagent grade and were used without further purification. Infrared spectra in KBr (4000-400 cm⁻¹) were recorded using a Thermo Scientific Nicolet iS20 spectrometer. Thermogravimetric analysis was recorded on a Perkin–Elmer Simultaneous Thermal Analyzer (STA) 8000 in the temperature range between 25 and 500 °C under a nitrogen atmosphere at a heating rate of 10°C min⁻¹. The PXRD data were collected on a Rigaku Smart Lab SE diffractometer using Cu-K α radiation (λ = 1.5406 Å) generated at 40 kV and 40 mA. The PXRD spectrum was recorded in a 2 θ range of 5-50. UV-Vis spectra were measured on a Shimadzu UV-2700 UV-Vis spectrophotometer. ¹H NMR spectra were recorded on a Bruker Avance II 400 MHz NMR spectrometer. Fluorescence spectra were obtained on a HITACHI F-4700 fluorescence spectrophotometer. Photodimerization reactions were carried out using a Kessil PR-160L LED (43 W UVA lamps) at 365 nm for 5 days at room temperature under a nitrogen atmosphere. Surface morphology of 1-PVDF was measured via TESCAN MIRA LMS scanning electron microscope (SEM) and Atomic force microscopy (AFM) using Bruker Multimode 8 AFM system and the data were processed by NanoScope Analysis version 1.4 (Bruker Software, Inc.).

Synthesis of [ZnL₂(4,4'-bipy)(CH₃OH)₂]:

A mixed solution of HL (0.05 mmol) and 4,4'-bipy (0.05 mmol) in CH_3OH (10 mL) in the presence of 0.05 mL dmpy(2,6-Lutidine) was layered on top of a H₂O solution (15 mL) of $Zn(NO_3)_2$ •6H₂O (0.1 mmol) in a test tube. Light yellow crystals were obtained after four days at the boundary between CH_3OH and H₂O according to the literature¹.

Fabrication of the mixed matrix membrane:

The membranes were fabricated with the crystals 1 and poly(vinylidenefluoride) (PVDF, 7.5 wt %). The dry powders (75 mg) of 1 were dispersed in 5 ml acetone with bath sonication for 10 min in a penicillin bottle. PVDF solution (1.0 g, 7.5 wt %) was then added to the suspension. The mixture was sonicated for 10 min and evaporated in a vacuum to obtain a colloidal solution. The 1-PVDF film was prepared by a blade coating method and dried under vacuum at 60 °C to remove residual solvent. The membrane was then cut into approximately 10.0 mm \times 1.0 mm pieces.

Figure S1 UV-Vis absorption spectra before and after irradiation for 1 day and 5 days.

Figure S2 Powder X-ray diffraction (PXRD) patterns of simulated 1 (black), synthesized 1 (red),1-PVDF film (blue), pure PVDF film (green) and synthesized 2 (purple).

Figure S3 ¹H NMR of **1** (a) before irradiation, (b) after irradiation for 3 days and (c) 5 days at 365nm.

Figure S4 FT-IR spectra of 1 (black) and 2 (red).

Figure S5 a) Fluorescence emission ($\lambda_{ex} = 315$ nm) spectra of 1 before and after irradiation for 1 day and 5 days.

Fig. S6 TGA plot of 1 and 2 in N_2 before and after irradiation.

Figure S7 SEM image and EDS mapping images of the 1-PVDF membrane.

Figure S8 Optical images of Pure PVDF membrane (a) before (b) during (c) after light irradiation.

Figure S9 AFM images of surface morphologies of 1-PVDF before (a) (c) and after irradiation (b) (d).

 J.-J. Wang, C.-S. Liu, T.-L. Hu, Z. Chang, C.-Y. Li, L.-F. Yan, P.-Q. Chen, X.-H. Bu, Q. Wu, L.-J. Zhao, Z. Wang and X.-Z. Zhang, *CrystEngComm*, 2008, 10, 681-692.