Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Highly emissive 4-carbazole-appended salen–indium complex: the effect of strong donor–acceptor interaction

Yoseph Kim,^[a]† Jaehoon Kim,^[a, b]† Ji Hye Lee,^[c] Hyeongkwon Moon,^[a] Ga Hee Noh,^[d] Hyonseok Hwang,^[c] Junseong Lee,^[d] Jun Hui Park,^{*[a]} Youngjo Kim,^{*[a]} and Myung Hwan Park^{*[b]}

^[a] Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea

^[b] Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea

^[c] Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea

^[d] Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea

[†]Y. Kim and J. Kim contributed equally to this work.

Contents

¹ H and ¹³ C NMR Spectra of CBZIn1 and CBZIn2	S2
Crystallographic data and parameters of CBZIn1	S4
Cyclic voltammograms and Electrochemical data of CBZIn1 and CBZIn2	S 6
PL spectra of CBZIn1 and CBZIn2 in THF (20 µM) at 298 K······	S7
UV-vis absorption and PL data of CBZIn2 in various organic solvents (20 µM) at 298 K·······	S7
Emission decay curves of CBZIn2	S 8
Computational results of CBZIn2	S9

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra of **CBZIn1** (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S2 ¹H (top) and ¹³C (bottom) NMR spectra of CBZIn2 (* from residual CH₂Cl₂ in CD₂Cl₂).

Compound	$C_{45}H_{30}InN_4O_2 \cdot (C_7H_8) \cdot 0.5(C_2N_2)$
Formula	C ₅₃ H ₃₈ InN ₅ O ₂
Formula weight	891.70
Crystal system	Triclinic
Space group	Pī
a (Å)	11.7454(4)
<i>b</i> (Å)	12.2305(4)
<i>c</i> (Å)	15.3406(5)
α (°)	78.228(2)
β (°)	78.289(2)
γ (°)	69.581(2)
$V(Å^3)$	2000.83(12)
Ζ	2
$\rho_{\rm calc}({ m g~cm^{-3}})$	1.480
$\mu (\mathrm{mm}^{-1})$	0.642
<i>F</i> (000)	912
<i>T</i> (K)	100
Scan mode	multi-scan
<i>hkl</i> range	-14 < h < 14, -14 < k < 14, -18 < l < 18
Measurement reflns	27090
Unique reflns $[R_{int}]$	7557[0.0898]
Reflns used for refinement	7557
Refined parameters	570
$R_1^a (\mathbf{I} > 2\sigma(\mathbf{I}))$	0.0559
wR_2^b all data	0.0984
GOF on F^2	0.981
$\rho_{\text{fin}} (\text{max/min}) (e \text{ Å}^{-3})$	0.519, -0.936

Table S1 Crystallographic data and parameters for CBZIn1

^{*a*} $\mathbf{R}_1 = \sum ||F\mathbf{o}| - |F\mathbf{c}|| / \sum |F\mathbf{o}|$. ^{*b*} $w\mathbf{R}_2 = \{ [\sum w(F\mathbf{o}^2 - F\mathbf{c}^2)^2] / [\sum w(F\mathbf{o}^2)^2] \}^{1/2}$.

Compound	CBZIn1
	lengths
In-O1	2.092(3)
In–O2	2.071(3)
In–N1	2.251(3)
In–N2	2.288(4)
In–C45	2.126(5)
	Angles
O1–In–O2	91.98(11)
O1–In–N1	82.75(12)
O1–In–N2	140.68(12)
O2-In-N1	125.89(13)
O2–In–N2	82.21(12)
O1–In–C45	111.95(16)
O2–In–C45	111.49(15)
N1-In-N2	70.10(12)
C45-In-N1	120.39(15)
C45–In–N2	106.28(2)

Table S2 Selected bond lengths (Å) and angles (°) for CBZIn1

Fig. S3 Cyclic voltammograms (CV) for CBZIn1 and CBZIn2 (1 mM in MeCN, scan rate = 100 mV/s).

Compound	$E_{\rm ox}$ (V) ^a	$E_{\rm red} ({ m V})^a$	$E_{\rm HOMO}~({\rm eV})$	$E_{\rm LUMO}~({\rm eV})$	$E_{\rm g}({\rm eV})^b$					
CBZIn1	0.79	-1.33	-5.59	-3.47	2.12					
CBZIn2	0.80	-0.87	-5.60	-3.93	1.67					

Table S3 Electrochemical data of CBZIn1 and CBZIn2

^{*a*}The oxidation and reduction onset potentials in MeCN (1 mM, scan rate 100 mVs⁻¹) with reference to a ferrocene/ferrocenium (Fc/Fc⁺) redox couple. ^{*b*}Electrochemical band gap.

Fig. S4 PL spectra of CBZIn1 and CBZIn2 in THF (20 µM) at 298 K.

Table S4 UV–vis absorption and PL data of CBZIn2 in various organic solvents (20 μ M) at 298 K

Solvent	λ_{abs} /nm (ϵ , × 10 ⁻³ M ⁻¹ cm ⁻¹)	λ_{ex}/nm	λ_{em} /nm	$arPsi_{ m PL}$ /%
THF	382 (54.46), 431 (34.29), 561 (29.14), 590 (28.01)	384	589	53.9
DMF	381 (143.36), 431 (92.59), 551 (58.73), 577 (54.70)	398	550	18.5
DMSO	383 (44.62), 433 (32.08), 559 (31.44), 578 (29.99)	394	531	6.8

Fig. S5 Emission decay curves of (a) CBZIn1 and (b) CBZIn2 in toluene (20 μ M) solutions at 298 K (The red-line corresponds to the single-exponential fitting curves). (c) Emission decay curves of CBZIn2 in toluene at variable temperature.

(1/ 1	U			
state	$\lambda_{calc} (nm)$	$f_{ m calc}$	major c	ontribution
			S ₀	
1	490.51	0.5086	HOMO \rightarrow	LUMO (75.7%)
2	464.99	0.2153	HOMO-1 \rightarrow	LUMO (82.8%)
3	445.41	0.3551	HOMO \rightarrow	LUMO+1 (82.8%)
4	428.81	0.0132	HOMO-4 \rightarrow	LUMO (62.5%)
5	423.66	0.0482	HOMO-1 \rightarrow	LUMO+1 (61.3%)
			S ₁	
1	623.27	0.1495	HOMO \rightarrow	LUMO (90.3%)
2	575.08	0.2750	HOMO-1 \rightarrow	LUMO (92.5%)
3	542.65	0.0046	HOMO-2 \rightarrow	LUMO (96.6%)
4	498.57	0.0010	HOMO-3 \rightarrow	LUMO (99.5%)
5	480.10	0.0001	HOMO-4 \rightarrow	LUMO (99.8%)

Table S5 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **CBZIn1** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀)- and first singlet excited state (S₁)-optimized geometries in toluene

Table S6 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **CBZIn1** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in toluene

	E (eV)	benzonitrile	In–Me	4-CBZ	Phenoxy			
	S_0							
LUMO+3	-0.84	0.1	0.0	99.1	0.8			
LUMO+2	-1.14	71.6	0.2	3.4	24.8			
LUMO+1	-2.28	35.6	0.3	3.9	60.3			
LUMO	-2.51	40.2	0.2	3.5	56.1			
HOMO	-5.48	7.9	0.6	75.6	15.9			
HOMO-1	-5.54	3.0	0.0	85.1	11.8			
HOMO-2	-5.88	0.0	0.0	99.8	0.2			
HOMO-3	-5.90	0.2	0.1	98.6	1.0			
		S_1						
LUMO+3	-0.86	0.0	0.0	99.5	0.5			
LUMO+2	-1.24	76.5	0.2	1.9	21.4			
LUMO+1	-2.10	37.5	0.4	3.4	58.8			
LUMO	-3.02	35.3	0.4	3.0	61.4			
HOMO	-5.34	5.9	0.4	77.0	16.7			
HOMO-1	-5.59	4.9	0.6	81.3	13.1			
HOMO-2	-5.73	8.0	3.2	19.9	69.0			
HOMO-3	-5.86	0.0	0.0	99.9	0.2			

Fig. S6 The selected frontier orbitals of **CBZIn1** from TD-B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀)- and first singlet excited state (S₁)-optimized geometries in toluene.

state	$\lambda_{calc} (nm)$	f_{calc}	major	contribution
		-	S ₀	
1	649.34	0.6496	HOMO \rightarrow	LUMO (98.6%)
2	591.56	0.1697	HOMO-1 \rightarrow	LUMO (99.1%)
3	533.83	0.0724	HOMO-2 \rightarrow	LUMO (97.8%)
4	522.73	0.0001	HOMO-3 \rightarrow	LUMO (53.8%)
5	471.71	0.0735	HOMO-5 \rightarrow	LUMO (95.2%)
			S ₁	
1	871.51	0.0008	HOMO \rightarrow	LUMO (99.1%)
2	729.03	0.3077	HOMO-1 \rightarrow	LUMO (99.3%)
3	638.20	0.0104	HOMO-2 \rightarrow	LUMO (98.2%)
4	618.08	0.0039	HOMO-3 \rightarrow	LUMO (98.5%)
5	604.91	0.2047	HOMO-4 \rightarrow	LUMO (95.8%)

Table S7 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for **CBZIn2** from TD-B3LYP calculations using the B3LYP geometries at the ground state (S₀)- and first singlet excited state (S₁)-optimized geometries in toluene

Table S8 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of **CBZIn2** at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in toluene

	$\mathbf{E}(\mathbf{a}\mathbf{V})$	1,2-	In Ma	4 CD7	Dhanayyy				
	E(ev)	dicyanoethylene	In-Me	4-CBZ	Phenoxy				
S ₀									
LUMO+3	-0.92	0.1	0.0	99.1	0.8				
LUMO+2	-1.44	61.9	0.1	4.1	34.0				
LUMO+1	-2.21	28.1	1.2	5.0	65.6				
LUMO	-3.27	42.1	0.2	4.1	53.6				
HOMO	-5.55	10.5	0.9	69.4	19.2				
HOMO-1	-5.68	1.8	0.0	86.6	11.6				
HOMO-2	-5.98	0.0	0.0	100.0	0.0				
HOMO-3	-5.98	0.0	0.0	100.0	0.0				
		\mathbf{S}_1							
LUMO+3	-0.90	0.2	0.0	99.2	0.6				
LUMO+2	-1.62	61.0	0.1	1.9	37.0				
LUMO+1	-2.35	30.5	1.2	2.7	65.6				
LUMO	-3.61	44.6	0.2	2.1	53.0				
HOMO	-5.40	0.0	0.0	97.7	2.3				
HOMO-1	-5.64	3.8	0.2	85.3	10.6				
HOMO-2	-5.89	0.2	0.1	98.5	1.3				
HOMO-3	-5.95	0.0	0.0	99.8	0.2				

Fig. S7 The selected frontier orbitals of **CBZIn2** from TD-B3LYP calculations (Isovalue = 0.04 a.u.) at the ground state (S₀)- and first singlet excited state (S₁)-optimized geometries in toluene.

						-					
Atom	Х	Y	Z	Н	-0.814138	3.030803	-3.484193	С	-6.793195	-3.454870	-0.467660
Ν	-1.227474	3.242579	0.011058	Н	0.954410	2.954737	-3.491290	С	-6.385098	-1.739473	2.716469
Ν	1.408243	3.123476	0.000917	Н	2.896900	-1.714540	-0.649145	С	-7.084988	-3.284559	0.940868
Ο	-1.499897	0.488184	-0.752563	Н	-3.146322	-1.439644	-0.644308	С	-5.892277	-3.203143	-3.091925
0	1.425971	0.351399	-0.753277	С	6.040293	-2.708106	1.360622	Н	-4.778140	-1.473905	-2.435549
С	-2.684457	0.612263	-0.228332	С	5.553999	-2.927896	-0.852605	С	-7.225122	-4.372818	-1.432371
С	-3.536487	-0.522128	-0.220441	С	6.100918	-2.309853	2.699874	С	-7.175423	-2.468456	3.603940
С	-4.808282	-0.478967	0.332737	С	6.665115	-3.900557	0.916035	Н	-5.804183	-0.891475	3.060181
С	-5.292925	0.712488	0.931631	С	5.120018	-2.738770	-2.168220	С	-7.870706	-4.000309	1.851810
С	-4.478715	1.819684	0.955957	С	6.360238	-4.037311	-0.493322	С	-6.767807	-4.244976	-2.741012
Н	-4.842767	2.738867	1.408280	С	6.826600	-3.107984	3.582978	Н	-5.553019	-3.112814	-4.119668
С	-3.177688	1.822416	0.383526	Н	5.595578	-1.416323	3.047690	Н	-7.912133	-5.169922	-1.162676
С	-2.423040	3.025780	0.498442	С	7.387301	-4.685262	1.822823	С	-7.917015	-3.584243	3.179755
Н	-2.897671	3.820540	1.082094	С	5.485231	-3.693480	-3.116003	Н	-7.211483	-2.167302	4.646831
С	2.575621	2.799153	0.492403	Н	4.522850	-1.879190	-2.448906	Н	-8.430393	-4.872787	1.526816
Н	3.119658	3.547524	1.077114	С	6.712305	-4.983070	-1.463676	Н	-7.092418	-4.951404	-3.498907
С	3.219826	1.531141	0.377868	С	7.469712	-4.281165	3.152703	Н	-8.523121	-4.129770	3.896587
С	4.515778	1.413351	0.947780	Н	6.889337	-2.815866	4.627186	Ν	-5.637701	-1.622784	0.295048
Н	4.960719	2.296385	1.399892	Н	7.870553	-5.600580	1.493000	С	-0.566136	4.466103	0.197210
С	5.229439	0.238090	0.921044	С	6.268319	-4.808560	-2.771503	С	0.855219	4.403551	0.189896
С	4.640189	-0.904474	0.322754	Н	5.155539	-3.568195	-4.143214	С	-1.202226	5.707304	0.343479
С	3.367410	-0.834930	-0.226227	Н	7.328504	-5.837640	-1.198827	С	1.598282	5.577181	0.325981
С	2.619595	0.370323	-0.231886	Н	8.027530	-4.879889	3.866290	С	-0.459057	6.870070	0.501990
Н	6.234192	0.184401	1.321593	Н	6.531768	-5.535490	-3.533751	Н	-2.284351	5.768523	0.304548
Н	-6.297689	0.747851	1.334119	Ν	5.365341	-2.117629	0.280093	С	0.945465	6.808330	0.493919
In	0.027609	1.770375	-1.211565	С	-5.894894	-2.420893	-0.833156	Н	2.680861	5.550098	0.277473
С	0.045269	2.392637	-3.256685	С	-6.360379	-2.147630	1.379079	Н	-0.956265	7.827713	0.607413
Н	0.005255	1.526010	-3.923443	С	-5.446603	-2.277448	-2.149714	С	1.716194	8.008243	0.629593

Table S9 Cartesian coordinates of the ground state (S₀) fully optimized geometry in toluene of CBZIn1 from B3LYP calculations (in Å)

С Х Υ Ζ Η -0.8572112.494324 -3.508554-6.958760 -3.405961 -0.425746Atom 0.896815 -3.377207 С -1.5948782.703500 Η 2.689913 -6.536357 Ν -1.164935 3.199371 0.072205 2.905198 С 0.979637 Η -1.798064-0.426593 -7.244247 -3.203116 Ν 1.492396 3.091863 -0.054768-3.188438 С -3.051806 0 Η -1.510718-0.319624-6.034761 -3.207707-1.4630200.344820 -0.414262 0 С 6.264344 -2.5992281.302549 Η -4.916040 -1.467802-2.4125391.433476 0.274113 -0.531407С 5.580793 -2.992192-0.831730С -4.342528 -1.375429С -2.7254900.560249 -0.075459-7.3833706.410173 С С С -2.0954052.601090 -7.330751 -2.287164 3.615045 -3.598758-0.541870-0.055978С Η 3.003756 С 6.896977 -3.7989390.884992 -5.958938 -0.727561 -4.942663-0.4170410.301981 -2.103405 С С С 5.004350 -2.898922-8.034639 -3.8795341.916014 0.839357 0.667180 -5.459023 С С 6.460464 -4.048912-0.481204С -6.917123 -4.239937-2.684525 -4.616298 1.934896 0.671650 Η -5.013361 2.906561 0.955566 С 7.253415 -2.7903013.468199 Η -5.687570 -3.142489 -4.079079С Η 5.877509 -1.210730 2.928107 Η -8.070631 -5.136514 -1.096078-3.239772 1.859144 0.307065 С С С 7.725444 -4.4799991.769488 -8.076105 -3.416288 3.229657 -2.480522 3.056752 0.379740 С 5.306217 Η 4.645860 -3.905490-3.020808-7.371957 -1.946823Η -3.007308 3.922483 0.775071 С Η 4.349581 -2.078617-2.369745Η -4.7564101.623043 2.685179 2.821226 0.364296 -8.605610 Η 3.274891 0.849057 С 6.748052 -5.040980 -1.412448 Η -7.238639 -4.961000 -3.430196 3.605570 С С 7.906619 -3.9618833.060294 Η -8.686637 -3.931996 3.964906 3.332969 1.528685 0.284587 0.291499 С Η 7.392014 -2.4234514.479546 Ν -5.792881-1.563576 4.674409 1.461493 0.709112 С Η 8.218641 4.397998 0.166798 Η 2.375991 1.030885 -5.400166 1.473216 -0.515062 5.164917 С С 6.159814 -4.964958 -2.682603 С 0.923097 4.377858 0.085760 5.387932 0.276860 0.715724 С Η 4.869805 -3.863967-4.012984С -1.1292105.669526 0.347165 4.733468 -0.9071420.286680 С С Η 7.419602 -5.857109-1.165759 1.665578 5.548319 0.128793 3.415940 -0.888512-0.133966 С С Η 8.550294 3.759313 -0.380952 6.827631 0.409921 2.663139 0.319638 -0.156200 -4.485483 Η Η 6.372969 -5.735117 -3.416447 Η -2.208493 5.742433 0.400865 0.990040 6.435318 0.255452 Ν 5.480538 -2.111699 0.253662 С 1.029532 6.795616 0.294380 Η -6.507084 0.942109 0.927206 -0.065539 1.650411 -1.033080 С -6.059822-2.375510-0.811599Η 2.743313 5.517109 0.009890 In С -6.506253 -2.0579991.383317 Η -0.8796247.784471 0.528167 С 0.060535 2.023937 -3.142370С -5.595181 -2.263178-2.126679 С 1.793024 7.995286 0.325537 Η 0.204016 1.090197 -3.694717

Table S10 Cartesian coordinates of the	e first singlet excited state ((S_1) fully	optimized g	geometry in toluene	of CBZIn1 from	1 B3LYP calculations ((in Å)
	0		C	7 2	-	-	· /

					• • •	•					·
Atom	Х	Y	Ζ	Н	0.001029	1.001476	-3.637808	С	-6.760387	-1.685904	1.255704
Ν	-1.340638	3.382270	-0.129573	Н	-0.885276	2.524839	-3.479812	С	-4.947742	-2.737662	-1.733210
Ν	1.340796	3.382310	-0.129631	Н	0.884808	2.526283	-3.479552	С	-6.709038	-3.477510	-0.192386
Ο	-1.474745	0.538656	-0.287407	Н	3.116796	-1.378788	-0.045373	С	-7.129306	-0.928566	2.371785
Ο	1.474752	0.538724	-0.287092	Н	-3.116854	-1.378802	-0.045719	С	-7.361673	-2.939812	0.984024
С	-2.748842	0.730265	-0.097218	С	6.760511	-1.686003	1.255580	С	-5.146558	-3.912921	-2.456527
С	-3.588378	-0.405547	0.014624	С	5.726890	-2.536608	-0.590145	Н	-4.215602	-2.007397	-2.056539
С	-4.956167	-0.288155	0.220409	С	7.129669	-0.928642	2.371571	С	-6.888980	-4.650486	-0.934441
С	-5.557963	0.993925	0.344751	С	7.361637	-2.939982	0.983888	С	-8.139651	-1.429368	3.191943
С	-4.764927	2.110850	0.268298	С	4.947260	-2.737815	-1.732949	Н	-6.644253	0.011965	2.605234
Н	-5.217089	3.094791	0.361455	С	6.708760	-3.477707	-0.192375	С	-8.372774	-3.421849	1.823005
С	-3.358928	2.034405	0.049225	С	8.140099	-1.429489	3.191596	С	-6.101039	-4.865375	-2.061981
С	-2.639106	3.255125	0.066077	Н	6.644734	0.011939	2.605054	Н	-4.548392	-4.090998	-3.345248
Н	-3.220820	4.153390	0.290967	С	8.372829	-3.422065	1.822735	Н	-7.637952	-5.378731	-0.636766
С	2.639266	3.255164	0.065978	С	5.145846	-3.913143	-2.456215	С	-8.762455	-2.659161	2.920911
Н	3.221010	4.153429	0.290788	Н	4.215124	-2.007508	-2.056192	Н	-8.444409	-0.855395	4.062045
С	3.359047	2.034416	0.049168	С	6.888468	-4.650754	-0.934378	Н	-8.840540	-4.381629	1.623256
С	4.765072	2.110820	0.268076	С	8.762755	-2.659350	2.920533	Н	-6.227756	-5.771997	-2.645658
Н	5.217292	3.094751	0.361062	Н	8.445038	-0.855500	4.061623	Н	-9.546383	-3.020384	3.579437
С	5.558065	0.993865	0.344567	Н	8.840477	-4.381897	1.622958	Ν	-5.764721	-1.440526	0.292600
С	4.956188	-0.288202	0.220485	С	6.100315	-4.865652	-2.061767	С	-0.691828	4.596528	0.019712
С	3.588373	-0.405549	0.014828	Н	4.547507	-4.091236	-3.344816	С	0.691971	4.596550	0.019670
С	2.748887	0.730289	-0.097080	Н	7.637420	-5.379049	-0.636773	С	1.425653	5.810579	0.207964
Н	6.630424	1.078715	0.467884	Н	9.546754	-3.020603	3.578958	С	-1.425531	5.810536	0.208049
Н	-6.630302	1.078811	0.468228	Н	6.226846	-5.772328	-2.645398	Ν	2.075535	6.764746	0.358182
In	0.000058	1.746282	-1.016993	Ν	5.764687	-1.440614	0.292634	N	-2.075421	6.764693	0.358300
С	0.000164	1.977232	-3.142934	С	-5.727150	-2.536467	-0.590254				

Table S11 Cartesian coordinates of the ground state (S₀) fully optimized geometry in toluene of CBZIn2 from B3LYP calculations (in Å)

2.939757 С 0.432317 Х Υ Ζ Η 0.844554 3.031155 7.367494 -3.052482Atom -0.919928 С 4.574265 -2.973511 -1.899684Η 2.821193 3.037825 Ν 1.374708 3.390657 -0.374645 0.196482 С -3.659995 -0.583833 Η -3.130410 -1.322476 6.534309 Ν -1.343635 3.431686 -0.344152 3.083314 С 2.336255 0 Η -1.395184 0.163084 8.513707 -1.367546 1.446157 0.547229 0.057768 0 С -6.203880 -2.189387-1.019370Η 6.987518 0.076121 1.823834 -1.461869 0.595349 0.065872 С С -3.4908391.154446 С 2.739643 0.703221 -0.106106 -6.262971 -1.9698711.224001 8.484720 -5.940172 С -2.535150 С С -1.990115 -2.382292 4.620587 -4.212732 3.563903 -0.445349-0.042146С Η -2.160255 С -6.980187 -3.280419 -0.535317 3.820983 -2.238713 4.941856 -0.370842-0.210508 С С С -6.070447-1.5094992.535227 6.556932 -4.898793-1.2371290.870802 -0.4463825.566010 С С -7.018041-3.1388820.919890 С 9.055043 -2.6442372.101047 4.781121 2.005864 -0.510620 Η Η 5.251230 2.966017 -0.708528С -6.478326 -2.917009-3.274294 8.967439 -0.7246233.085143 0.979961 С Η -5.341917 -1.151887 -2.717682 Η 8.897337 -4.4807793.373381 1.972214 -0.351879 С С С -7.504071 -4.187150 -1.438346 5.597322 -5.170606 -2.2082942.671724 3.212425 -0.518412 Η -4.439962 С -6.656960 -2.250537 3.559875 3.884787 -3.301379Η 3.279453 4.068657 -0.821926 С Η -5.486933 -0.6187432.732812 Η 7.317398 -5.635032 -0.991474-2.649982 3.294731 -0.434276Η -3.248722 -0.707435С -7.590796 -3.857941 1.952649 Η 9.922390 -2.9714802.666591 4.166625 С С -7.245833-3.994788-2.814125 Η 5.603479 -6.127499-2.721759-3.376776 2.061706 -0.244574-6.298466 Η -2.801964-4.336885 Ν 5.728448 -1.555171 -0.150207С -4.784296 2.129254 -0.335629 С -8.100085 -1.1092340.740060 4.589084 -0.630451 Η 3.101573 -0.496340 Η -5.031521 -5.242507 С С -7.403060 -3.402388 3.276897 С -0.681062 4.605469 -0.614464 1.010782 -0.235959 -5.601015 С -4.975058 Η -6.532599 -1.9318414.588303 С -1.4045095.785581 -0.926107-0.225062-0.046414С С -8.172365 -4.753659 1.762932 1.482715 5.751339 -0.951342 -3.596808 -0.354226 0.051485 Η -7.652336 -3.528979Ν -2.063014 6.719344 -1.171561 С -2.752596 0.781548 -0.034032Η -4.701755 Η -7.847993 -3.961349 4.092765 Ν 2.148357 6.678378 -1.207068 Η 1.087813 -6.679905 -0.308113 -5.788839-1.4203990.050216 0.921942 Ν Η 6.637554 -0.600360 0.024893 1.877676 0.647209 С 6.842364 -1.7556450.671813 In С 5.533468 -2.709816-0.916336 С 0.000238 2.302049 2.750784

-0.906583

1.631695

7.403329

С

Η

0.066407

1.381645

3.339537