## Detection of aqueous and gaseous hydrogen sulfide with lanthanide-

### macrocycle binary complexes

Parvathy Mini,<sup>a</sup> Samuel E. Walker,<sup>a</sup> Michael R. Grace,<sup>a</sup> Genevieve H. Dennison\*,<sup>b,c</sup>

and Kellie L. Tuck,\*a

<sup>a</sup>School of Chemistry, Monash University, Clayton, Victoria 3800, Australia. Email:

Kellie.Tuck@monash.edu

<sup>b</sup>CBRN Defence Branch, Sensors and Effectors Division, Defence Science and

Technology Group, Fishermans Bend, VIC, 3207 Australia.

Genevieve.Dennison@defence.gov.au

<sup>c</sup>Electro Optical Systems Branch, Sensors and Effectors Division, Defence Science

and Technology Group, Edinburgh, SA, 5111 Australia.

Table of Contents

| Mass spectra                                            | .S2 |
|---------------------------------------------------------|-----|
| NMR spectra                                             | .S3 |
| Supporting figures for solution luminescence studies    | .S5 |
| Supporting figures for paper-based luminescence studies | S11 |

# Mass spectra





Figure S2. HRMS of [Tb.2].Na, insert: expanded MS with the matching predicted isotope pattern displayed in red.



Figure S3. <sup>1</sup>H NMR spectrum of [Eu.2] (400 MHz, DMSO- $d_{B}$ ), (top), with expansion shown, and the <sup>1</sup>H/<sup>1</sup>H COSY NMR spectrum of [Eu.2] (bottom).



Figure S4. <sup>1</sup>H NMR spectrum of [Tb.2] (400 MHz, DMSO-*d*<sub>6</sub>) (top) and <sup>1</sup>H/<sup>1</sup>H COSY NMR spectrum (10-16 ppm) of [Tb.2] (bottom).

#### Solution luminescence studies:



Figure S5. Absorption (yellow line), excitation (red line,  $\lambda_{em}$  = 615 nm), and emission (green line,  $\lambda_{ex}$  = 250 nm) spectra of 10  $\mu$ M Eu.2, in 10 mM Tris-HCl buffer, pH 7.4



**Figure S6.** The time-gated emission spectra (680-710 nm,  $\lambda_{ex} = 250$  nm) spectra of 50 µM Eu.2 ([Eu(DO2A)(triazole-DPA)]<sup>-</sup>), with i) alone, ii) 1 equivalent of DO2A, iii) 1 equivalent of L, or iv) 50 µM [EuL<sub>3</sub>]<sup>3</sup> formed *in situ*. All solutions are in 10 mM Tris-HCl buffer, pH 7.4; excitation slit width 10 nm, emission slit width 1.5 nm.



Figure S7. The time-gated emission spectra ( $\lambda_{ex}$  = 250 nm) spectra of 10 µM Eu.2 ([Eu(DO2A)(triazole-DPA)]<sup>-</sup>), with varying amounts of L (triazole-DPA), in 10 mM Tris-HCI buffer, pH 7.4, excitation slit width 5 nm, emission slit width 5 nm.



Figure S8. Selected region of the time-gated emission spectra (680-710 nm, λ<sub>ex</sub> = 250 nm) spectra of 10 μM Eu.2 ([Eu(DO2A)(triazole-DPA)]<sup>-</sup>), with varying amounts of L (triazole-DPA), in 10 mM Tris-HCl buffer, pH 7.4, excitation slit width 5 nm, emission slit width 5 nm.



**Figure S9.** Selected region of the time-gated emission spectra (675-715 nm,  $\lambda_{ex} = 250$  nm) spectra of 10 µM Eu.2 ([Eu(DO2A)(triazole-DPA)]<sup>-</sup>), with varying amounts of DO2A, in 10 mM Tris-HCI buffer, pH 7.4, excitation slit width 5 nm, emission slit width 5 nm.



**Figure S10.** The time-gated emission spectra ( $\lambda_{ex} = 250 \text{ nm}$ ) of [Eu(DO2A)]<sup>+</sup> (50 µM) with the addition of various amounts of L (0 to 87.5 µM), insert Luminescent intensity changes detected at the wavelengths noted; spectra measured in 10 mM Tris HCl buffer (pH 7.4). The association constant was determined by fitting to binding models using a custom written python program BindFit available at www.supramolecular.org; http://app.supramolecular.org/bindfit/view/f71fe141-81eb-4b7a-8899-e3e020bbe69c.



Figure S11. Luminescence intensity of Eu.2 (10  $\mu$ M) in 10 mM Tris-HCl buffer, pH 7.4, containing <5% DMSO upon the alternate addition of Cu<sup>2+</sup> ions (10  $\mu$ M) and Na<sub>2</sub>S (10  $\mu$ M) at 615 nm; spectra measured in 10 mM Tris HCl buffer (pH 7.4) with  $\lambda_{ex}$  = 250 nm, (n = 1).



**Figure S12.** Eu.2.Cu (10  $\mu$ M) in the presence of various anions; Red bar: Eu.2.Cu (10  $\mu$ M); purple bar: Eu.2.Cu (10  $\mu$ M) + Na<sub>2</sub>S (10  $\mu$ M); (light grey bars: Eu.2.Cu (10  $\mu$ M) + anion (50  $\mu$ M); Black bars: Eu.2.Cu (10  $\mu$ M) + anion (50  $\mu$ M) + Na<sub>2</sub>S (10  $\mu$ M); spectra measured in 10 mM Tris-HCl buffer (pH 7.4), containing <5% DMSO,  $\lambda_{ex}$  = 250 nm,  $\lambda_{em}$  = 615 nm and showing the average of triplicate results (n=3). L.A = lipoic acid, G.T. = glutathione.



Figure S13. Absorption (yellow line), excitation (red line,  $\lambda_{em}$  = 545 nm), and emission (green line,  $\lambda_{ex}$  = 250 nm) spectra of Tb.2 (10  $\mu$ M), in 10 mM Tris-HCl buffer, pH 7.4, containing <5% DMSO.



Figure S14. The time-gated emission spectra (570-600 nm,  $\lambda_{ex} = 250$  nm) spectra of 50 µM Tb.2 ([Tb(DO2A)(triazole-DPA)]<sup>-</sup>), with i) alone, ii) 1 equivalent of DO2A, iii) 1 equivalent of L, or iv) 50 µM [TbL<sub>3</sub>]<sup>3-</sup> formed *in situ*. All solutions are in 10 mM Tris-HCl buffer, pH 7.4; excitation slit width 10 nm, emission slit width 1.5 nm.



**Figure S15.** The time-gated emission spectra (470-570 nm and 450-650 nm,  $\lambda_{ex} = 250$  nm) spectra of 10 µM Tb.2 ([Tb(DO2A)(triazole-DPA)]<sup>-</sup>), with varying amounts of L (triazole-DPA), in 10 mM Tris-HCl buffer, pH 7.4, excitation slit width 5 nm, emission slit width 5 nm. There is a shift with the addition of excess L (light blue and orange lines), indicative of formation of [TbL<sub>3</sub>]<sup>3-</sup>



Figure S16. The time-gated emission spectra ( $\lambda_{ex}$  = 250 nm) spectra of 10 µM Tb.2 ([Tb(DO2A)(triazole-DPA)]<sup>-</sup>), with varying amounts of DO2A, in 10 mM Tris-HCl buffer, pH 7.4, excitation slit width 5 nm, emission slit width 5 nm. The intensity of signals does not change with addition of excess DO2A.



Figure S17. The time-gated emission spectra (450-650 nm,  $\lambda_{ex} = 250$  nm) spectra of 50 µM Tb.2 ([Tb(DO2A)(triazole-DPA)]<sup>-</sup>), with i) alone, ii) 1 equivalent of DO2A, iii) 1 equivalent of L, or iv) 50 µM [TbL<sub>3</sub>]<sup>3-</sup> formed *in situ*. All solutions are in 10 mM Tris-HCl buffer, pH 7.4; excitation slit width 10 nm, emission slit width 1.5 nm.



**Figure S18.** The time-gated emission spectra ( $\lambda_{ex} = 250 \text{ nm}$ ) of [Tb(DO2A)]<sup>+</sup> (50 µM) with the addition of various amounts of L (0 to 150 µM), insert Luminescent intensity changes detected at the selected wavelengths noted; spectra measured in 10 mM Tris HCl buffer (pH 7.4). The association constant was determined by fitting to binding models using a custom written python program BindFit available at www.supramolecular.org; http://app.supramolecular.org/bindfit/view/509e824f-0d66-4c66-9089-62c0d549f76e.



Figure S19. Luminescence intensity of Tb.2 (10  $\mu$ M) in 10 mM Tris-HCl buffer, pH 7.4, containing <5% DMSO upon the alternate addition of Cu<sup>2+</sup> ions (10  $\mu$ M) and Na<sub>2</sub>S (10  $\mu$ M) at 545 nm; spectra measured in 10 mM Tris HCl buffer (pH 7.4) with  $\lambda_{ex}$  = 250 nm, (n = 1).



**Figure S20.** Tb.**2**.Cu (10  $\mu$ M) in the presence of various anions; Green bar: Tb.**2**.Cu (10  $\mu$ M); Blue bar: Tb.**2**.Cu (10  $\mu$ M) + Na<sub>2</sub>S (10  $\mu$ M); (Grey bars: Tb.**2**.Cu (10  $\mu$ M) + anion (50  $\mu$ M); Black bars: Tb.**2**.Cu (10  $\mu$ M) + nion (50  $\mu$ M) + Na<sub>2</sub>S (10  $\mu$ M); spectra measured in 10 mM Tris-HCl buffer (pH 7.4), containing <5% DMSO,  $\lambda_{ex}$  = 250 nm,  $\lambda_{em}$  = 545 nm and showing the average of triplicate results (n=3). L.A = lipoic acid, G.T. = glutathione.

#### Paper-based luminescence studies:



Figure S21. Change in luminescence intensity of filter paper discs impregnated with [Eu.2.Cu<sup>2+</sup>]<sup>+</sup> at 615 nm upon exposure to 6 ppm gaseous  $H_2S_{(g)}$  over time (0.5 – 4 min), 23 °C. Showing the average of triplicate results (n=3).



**Figure S22.** a) Time-delayed emission spectra of filter paper discs impregnated with Eu.2.Cu in the presence of various gases; Light blue bar: Eu.2.Cu; Red bar: Eu.2.Cu + H<sub>2</sub>S (4 ppm, 0.5 L/min for 4 min); Dark blue bars: Eu.2.Cu prior to exposure; Brown bars: after exposure to the respective gases [HCN (4 ppm, 0.5 L/min for 4 min), Cl<sub>2</sub> (4 ppm, 0.5 L/min for 4 min), O<sub>2</sub>/CO<sub>2</sub> (4 min exposure), Air (4 min exposure), N<sub>2</sub> (4 min exposure); spectra measured at  $\lambda_{ex}$  = 250 nm,  $\lambda_{em}$  = 615 nm and showing the average of triplicate results (n=3).