Supporting information

Fig. S1 (a) Intermediate products of Mn-BDC and $\rm NH_4VO_3$ annealed at 200 $^\circ\!C$. (b) SEM image of MVO@C .

Fig. S2 Pore size distribution on MVO@C layered nanoplates.

Fig. S3 The HRTEM image of MVO@C.

Fig. S4 The XRD pattern of Mn-BDC.

Fig. S5 XRD patterns of MVO@C cathode at different V and Mn ratios.

Fig. S6 Total XPS spectrum of MVO@C.

Fig. S7 CV comparison of MVO@C and V_2O_5 at 0.1mV s⁻¹ scan rate.

Fig. S8 Cycle performance of MVO@C and MVO at 4 A g⁻¹.

Cycle number	$\mathrm{MVO}@\mathrm{C}\ \mathrm{Rs}\ (\Omega)$	MVO@C Rct (Ω)
0	4.962	432.6
50	2.651	59.62
250	1.24	13.9

Table S1. Rs (Ω) and Rct (Ω) values on electrochemical impedance spectroscopy of MVO@C.

Fig. S9 (a) Instantaneous contact angle of V_2O_5 cathode, and (b) Instantaneous contact angle of MVO@C cathode.

Cathode	Electrolyte	Maximum capacity	Cycle performance	Ref.
MgxV ₂ O ₅ ·nH ₂	3 M	350 mAh g ⁻¹ at 0.1 A g ⁻¹	90 mAh g^{-1} at 5 A g^{-1} after	1
О	Zn(CF ₃ SO ₃) ₂		2000 cycles.	
C@VO ₂	3 M	376 mAh g ⁻¹ at 0.05 A g ⁻	160 mAh g ⁻¹ at 5 A g ⁻¹ after	2
$@V_2O_5$	Zn(CF ₃ SO ₃) ₂	1	2000 cycles	2
Cu _{0.26} V ₂ O ₅ @C	3 M	328.8 mAh g ⁻¹ at 0.2 A	173.5 mAh g^{-1} at 2 A g^{-1}	3
	Zn(CF ₃ SO ₃) ₂	g-1	after 500 cycles	
ZnVOH/rGO	3 M	306 mAh g^{-1} at 0.1 A	210 mAh g^{-1} at 0.1 A $g^{\text{-1}}$	4
	Zn(CF ₃ SO ₃) ₂	g^{-1}	after 100 cycles	
a-V ₂ O ₅	3 M	348 mAh g ⁻¹ at 0.1 A	~80 mAh g ⁻¹ at 5 A g ⁻¹ after	5
	Zn(CF ₃ SO ₃) ₂	g^{-1}	2000 cycles	3
P-V ₂ O ₅	3 M	322 mAh g ⁻¹ at 0.1 A	80 mAh g^{-1} at 2 A g^{-1} after	6
	Zn(CF ₃ SO ₃) ₂	g^{-1}	2000 cycles	
V ₂ O ₅ @Graphe	3 M	${\sim}375~mAh~g^{-1}$ at 0.1 A	305 mAh g^{-1} at 0.1 A g^{-1}	7
ne	Zn(CF ₃ SO ₃) ₂	g^{-1}	after 100 cycles	7
V_2O_5	3 M	226 mAh g^{-1} at 0.294 A	166 mAh g ⁻¹ at 0.588 A g ⁻¹	0
nanofifiber	$Zn(CF_3SO_3)_2$	g^{-1}	after 500 cycles	8
Ag _{0.33} V ₂ O ₅	2 M	200 mAh g ⁻¹ at 0.2 A	~75 mAh g^{-1} at 3 A g^{-1} after	0
	Zn(CF ₃ SO ₃) ₂	g^{-1}	700 cycles	9

Table S2 Electrode performances of reported vanadium-based materials in AZIBs.

Mn _{0.18}	3 M	380 mAh g ⁻¹ at 0.1 A g ⁻¹	161 mAh g ⁻¹ at 6 A g ⁻¹	This
V ₂ O ₅ @C	Zn(CF ₃ SO ₃) ₂		after 2000 cycles	work

Fig. S10 The GITT curves and the corresponding Zn^{2+} diffusion coefficient of the V_2O_5 electrode.

References:

- 1. F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, *ACS Energy Letters*, 2018, **3**, 2602-2609.
- 2. Y. Tong, Y. Zhao, M. Luo, S. Su, Y. Yang, Y. Zang, X. Li, L. Wang and J. Fang, *Journal of Alloys and Compounds*, 2023, **932**, 167681.
- 3. X. Wang, B. Zhang, J. Feng, L. Wang, B. Wu, J. Zhang, X. Ou, F. Hou and J. Liang, *Sustainable Materials and Technologies*, 2020, **26**, e00236.
- 4. Y. Fan, X. Yu, Z. Feng, M. Hu and Y. Zhang, *Molecules*, 2022, **27**, 5387.
- 5. S. Wu, Y. Ding, L. Hu, X. Zhang, Y. Huang and S. Chen, *Materials Letters*, 2020, **277**, 128268.
- Y. Ding, Y. Peng, W. Chen, Y. Niu, S. Wu, X. Zhang and L. Hu, *Applied Surface Science*, 2019, 493, 368-374.
- 7. L. Gong, Y. Zhang and Z. Li, *Materials Today Chemistry*, 2022, **23**, 100731.
- 8. X. Chen, L. Wang, H. Li, F. Cheng and J. Chen, *Journal of Energy Chemistry*, 2019, **38**, 20-25.
- 9. B. Lan, Z. Peng, L. Chen, C. Tang, S. Dong, C. Chen, M. Zhou, C. Chen, Q. An and P. Luo, *Journal of Alloys and Compounds*, 2019, **787**, 9-16.