Supporting Information

Investigation on in situ sulfide/nitride/phosphide treatments of

hematite photoanodes for improved solar water oxidation

Xiu-Shuang Xing,^a Zhongyuan Zhou,^{*b} Peilin Song,^a Xin Song,^b Xiaofei Ren,^{a,c} Daojun Zhang,^a Xuyang Zeng,^{a,c} Yao Guo,^b and Jimin Du^{*a,c}

^aInternational Joint Laboratory of Henan Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China. E-mail: djm@iccas.ac.cn

^bHenan International Joint Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China. Email: 20200038@ayit.edu.cn

^cCollege of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China.

Fig. S1 The top-views and cross-section SEM images of $FTO/Sn@\alpha$ -Fe₂O₃ (a and b) and $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH (c and d) photoanodes.

Fig. S2 The EDS composition of FTO/Sn@ α -Fe₂O₃ photoanode.

Fig. S3 The EDS composition of $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH photoanode.

Fig. S4 The TEM and HRTEM images of $FTO/Sn@\alpha$ -Fe₂O₃ (a and b) and $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH (c and d) photoanodes.

Fig. S5 The TEM and HRTEM images of FTO/Sn@α-Fe₂O₃/FeOOH/TU photoanode.

Fig. S6 The XRD patterns of $FTO/Sn@\alpha-Fe_2O_3$, $FTO/Sn@\alpha-Fe_2O_3/FeOOH$, $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TAA$, and $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TAA/PDP$ photoanodes.

Fig. S7 The XRD patterns of $FTO/Sn@\alpha$ -Fe₂O₃, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TU, and $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TU/PDP photoanodes.

Fig. S8 The XPS spectra of $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TAA, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/UR, and $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/PDP photoanodes.

Fig. S9 The top-view SEM images of (a) $FTO/Sn@\alpha-Fe_2O_3$, (b) $FTO/Sn@\alpha-Fe_2O_3/TAA-30s$, (c) $FTO/Sn@\alpha-Fe_2O_3/TAA-60s$, and (d) $FTO/Sn@\alpha-Fe_2O_3/TAA-5min$ photoanodes, respectively.

Fig. S10 The transient photocurrent density curves of FTO/Sn@ α -Fe₂O₃, FTO/Sn@ α -Fe₂O₃/TAA-30s, FTO/Sn@ α -Fe₂O₃/TAA-60s, and FTO/Sn@ α -Fe₂O₃/TAA-5min photoanodes, respectively.

Fig. S11 The top-view SEM images of (a) $FTO/Sn@\alpha$ -Fe₂O₃, (b) $FTO/Sn@\alpha$ -Fe₂O₃/UR-30s, (c) $FTO/Sn@\alpha$ -Fe₂O₃/UR-60s, and (d) $FTO/Sn@\alpha$ -Fe₂O₃/UR-5min photoanodes, respectively.

Fig. S12 The top-view SEM images of (a) $FTO/Sn@\alpha$ -Fe₂O₃, (b) $FTO/Sn@\alpha$ -Fe₂O₃/PDP-30s, (c) $FTO/Sn@\alpha$ -Fe₂O₃/PDP-60s, and (d) $FTO/Sn@\alpha$ -Fe₂O₃/PDP-5min photoanodes, respectively.

Fig. S13 The transient photocurrent density curves of $FTO/Sn@\alpha-Fe_2O_3$, $FTO/Sn@\alpha-Fe_2O_3/UR-30s$, $FTO/Sn@\alpha-Fe_2O_3/UR-60s$, and $FTO/Sn@\alpha-Fe_2O_3/UR-5min$ photoanodes, respectively.

Fig. S14 The transient photocurrent density curves of (a) $FTO/Sn@\alpha-Fe_2O_3$, (b) $FTO/Sn@\alpha-Fe_2O_3/PDP-30s$, (c) $FTO/Sn@\alpha-Fe_2O_3/PDP-60s$, and (d) $FTO/Sn@\alpha-Fe_2O_3/PDP-5min$ photoanodes, respectively.

Fig. S15 The top-view SEM images of (a) $FTO/Sn@\alpha$ -Fe₂O₃, (b) $FTO/Sn@\alpha$ -Fe₂O₃/TU-30s, (c) $FTO/Sn@\alpha$ -Fe₂O₃/TU-60s, and (d) $FTO/Sn@\alpha$ -Fe₂O₃/TU-5min photoanodes, respectively.

Fig. S16 The (a) *J-V* curves and (b) transient photocurrent density curves of $FTO/Sn@\alpha-Fe_2O_3$, $FTO/Sn@\alpha-Fe_2O_3/TU-30s$, $FTO/Sn@\alpha-Fe_2O_3/TU-60s$, and $FTO/Sn@\alpha-Fe_2O_3/TU-5min$ photoanodes, respectively.

Fig. S17 The top-view SEM images of (a) $FTO/Sn@\alpha-Fe_2O_3/FeOOH-1$, (b) $FTO/Sn@\alpha-Fe_2O_3/FeOOH-3$, (c) $FTO/Sn@\alpha-Fe_2O_3/FeOOH-5$, and (d) $FTO/Sn@\alpha-Fe_2O_3/FeOOH-7$ photoanodes, respectively.

Fig. S18 The (a) *J-V* curves and (b) transient photocurrent density curves of $FTO/Sn@\alpha-Fe_2O_3$, $FTO/Sn@\alpha-Fe_2O_3/FeOOH-1$, $FTO/Sn@\alpha-Fe_2O_3/FeOOH-3$, $FTO/Sn@\alpha-Fe_2O_3/FeOOH-5$, and $FTO/Sn@\alpha-Fe_2O_3/FeOOH-7$ photoanodes.

Fig. S19 The top-view SEM images of (a) $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TAA$, (b) $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TAA/PDP$, (c) $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TU$, and (d) $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TU/PDP$ photoanodes, respectively.

Fig. S20 The EDS composition of FTO/Sn@ α -Fe₂O₃/FeOOH/TAA photoanode.

Fig. S21 The EDS composition of FTO/Sn@ α -Fe₂O₃/FeOOH/TAA/PDP photoanode.

Fig. S22 The EDS composition of FTO/Sn@ α -Fe₂O₃/FeOOH/TU photoanode.

Fig. S23 The EDS composition of FTO/Sn@ α -Fe₂O₃/FeOOH/TU/PDP photoanode.

Fig. S24 The transient photocurrent density curves of $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TU/PDP photoanode with different light intensity (1 sun and 2 sun).

Fig. S25 The *J-V* curves of $FTO/Sn@\alpha-Fe_2O_3/FeOOH/TU/PDP$ photoanode with different pH.

Fig. S26 A comparison of J-V curves for FTO/Sn@ α -Fe₂O₃/FeOOH/TU/PDP photoanode using platinum mesh and graphite rod as the counter electrode, respectively.

Fig. S27 The UV-vis absorbance spectra of $FTO/Sn@\alpha$ -Fe₂O₃, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TAA, and $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TAA/PDP photoanodes.

Fig. S28 The UV-vis absorbance spectra of $FTO/Sn@\alpha$ -Fe₂O₃, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH, $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TU, and $FTO/Sn@\alpha$ -Fe₂O₃/FeOOH/TU/PDP photoanodes.

Fig. S29 The density of states in (a) α -Fe₂O₃/FeOOH photoanode with (b) sulfide, (c) nitride, (d) phosphide, respectively.

Tab. S1 A comparison of the PEC-WS performances between hematite photoanodes in the related literature and our present hematite photoanode with in situ sulfide/nitride/phosphide treatments.

Photoanode	Film texture	Optimized sample (<i>J-V</i> curves)	$J_{ m ph@1.23V} \ U_{ m on}$	Testing conditions (Under AM1.5G irradiation)	Key Methods	Ref.
NiCoAl- LDH/α-Fe ₂ O ₃	(g) 1 <u>um</u>	(b) $1 = 2^{-1} C_{0}^{-1} C_{0$	2.56 mA/cm ² 0.55 V _{RHE}	0.5 M potassium phosphate (K- Pi) buffer (pH = 7)	hydrothermal method	[1]
FTO/Sn@α- Fe ₂ O ₃ - Mn/CoO _x	С 500 nm	$ \begin{array}{c} \textbf{R} \\ \textbf{T} \\ \textbf$	2.67 mA/cm ² 0.8 V _{RHE}	1 M NaOH (pH 13.6) with 20 mV/s	hydrothermal method and annealing	[2]
Co- Pi/Co ₃ O ₄ /Ti:Fe 2O ₃	20 <u>9 nm</u> 5 <u>00 nm</u>	A) 4 	2.7 mA/cm ² 0.64 V _{RHE}	1 M NaOH (pH 13.6)	hydrothermal and electrodepositi on	[3]
Pt:Fe ₂ O ₃ /Co-Pi	X70,000 — 100nm	Constraints of the second seco	4.32 mA/cm ² 0.58 V _{RHE}	1 M NaOH (pH 13.6)	solution-based method	[4]
α- Fe ₂ O ₃ /Ni ₃ FeO OH/Ag@SiO ₂ / FeOOH-5		University of the second secon	4.54 mA/cm ² 0.7 V _{RHE}	1 M NaOH (pH 13.6) with 20 mV/s	hydrothermal method and spin-coated	[5]
SiMWs/Sn@α- Fe ₂ O ₃ with RTP	(b) <u>10 µm</u> мн и и и и не с 10 ми	(a) 	3.12 mA/cm ² 0.15 V _{RHE}	1 M NaOH (pH 13.6) with 20 mV/s	thermal decomposition and RTP	[6]
α-Fe ₂ O ₃ /n- SiNWs	(b) <u>в</u>	1.23 V 25 µm 1.23 V 25 µm 13 µm 13 µm 0.4 06 0 8 10 12 14 15 13 25 0.4 06 0 8 10 12 14 15 13 25	5.28 mA/cm ² 0.50 V _{RHE}	1 M NaOH (50 mV/s) with magnetic stirring	deposition annealing	[7]
FTO/Sn@α- Fe ₂ O ₃	20m 500 nm	Determined before softward in Ar the provided before softward in	2.30 mA/cm ² 0.80 V _{RHE}	1 M NaOH	thermal posttreatment under Ar gas at 550 °C	[8]

					for 6 hours	
SAs Pt:Fe ₂ O ₃		B 5 5 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.71 mA/cm ² 0.627 V _{RHE}	1 M Potassium hydroxide (KOH, pH = 14) with 10 mV/s	thermally annealed and plasma etching	[9]
DASs Ru- P:Fe ₂ O ₃	8	C C C C C C C C C C C C C C C C C C C	3.32 mA/cm ² 0.63 V _{RHE}	1 M Potassium hydroxide (KOH, pH = 14) with 10 mV/s	thermally annealed and CVD	[10]
FTO/Sn@α- Fe ₂ O ₃ /FeOOH/ TAA/PDP	b	Compared to the second	3.09 mA/cm ² 0.8 V _{RHE}	1 M NaOH (pH 13.6) with 20 mV/s	Hydrothermal, electrodepositi on and in situ sulfide/phosph ide	This work
FTO/Sn@α- Fe ₂ O ₃ /FeOOH/ TU/PDP	đ	Troses +0,0,000 Troses +0,0,00	3.38 mA/cm ² 0.7 V _{RHE}	1 M NaOH (pH 13.6) with 20 mV/s	Hydrothermal, electrodepositi on and in situ sulfide/nitride/ phosphide	This work

References

- G. Wang, B. Wang, C. Su, D. Li, L. Zhang, R. Chang and Z. Chang, J. Catal., 2018, 359, 287–295.
- [2] X.-S. Xing, M. Bao, P. Wang, X. Wang, Y. Wang and J. Du, Appl. Sur. Sci., 2022, 572, 151472.
- [3] S.-S. Yi, B.-R. Wulan, J.-M. Yan and Q. Jiang, Adv. Funct. Mater., 2019, 29, 1801902.
- [4] J. Y. Kim, G. Magesh, D. H. Youn, J.-W. Jang, J. Kubota, K. Domen and J. S. Lee, *Sci. Reports*, 2013, 3, 268.
- [5] X.-S. Xing, X. Ren, X. Zeng, A. Li, Y. Wang, Z. Zhou, Y. Guo, S. Wu and J. Du, Sol. RRL, 2023, 7, 2201041.
- [6] Z. Zhou, S. Wu, L. Qin, L. Li, L. Li and X. Li, J. Mater. Chem. A, 2018, 6,

15593-15602.

- [7] X. Qi, G. She, X. Huang, T. Zhang, H. Wang, L. Mu and W. Shi, *Nanoscale*, 2014, 6, 3182–3189.
- [8] J. J. Wang, Y. Hu, R. Toth, G.Fortunato and A. Braun, *J. Mater. Chem. A*, 2016, 4, 2821–2825.
- [9] R.-T. Gao, J. Zhang, T. Nakajima, J. He, X. Liu, X. Zhang, L. Wang and L. Wu, *Nat. Commun.*, 2023, 14, 2640.
- [10] R.-T. Gao, L. Liu, Y. Li, Y. Yang, J. He, X. Liu, X. Zhang, L. Wang and L. Wu, Proc. Natl. Acad. Sci. USA, 2023, 120, e2300493120.