Supporting Information

Study of paraCEST response on six-coordinated Co(II) and Ni(II) complexes of a pyridine-tetraamide-based ligand

Suvam Kumar Panda, Ankit Rai, and Akhilesh Kumar Singh*

Indian Institute of Technology Bhubaneswar, Khordha, Odisha, India, Pin-752050.

Contents:

- 1. **Fig. S1**. ¹H NMR (400 MHz) of compound **7** in CDCl₃ (* mark indicates the residual peak of the solvent).
- 2. Fig. S2. ¹³C NMR (100 MHz) of compound 7 in CDCl₃ (* mark indicates the residual peak of the solvent).
- 3. **Fig. S3**. ¹H NMR (400 MHz) of PATA in DMSO-d₆ (* mark indicates the residual peak of the solvent).
- 4. **Fig. S4**. ¹³C NMR (100 MHz) of PATA in DMSO-d₆ (* mark indicates the residual peak of the solvent).
- 5. Fig. S5. HRMS spectrum of the compound 7.
- 6. Fig. S6. HRMS spectrum of the ligand PATA.
- 7. Fig. S7. HRMS spectrum of [Co(PATA)]²⁺.
- 8. Fig. S8. HRMS spectrum of [Ni(PATA)]²⁺.
- 9. Fig. S9. FT-IR Spectra of PATA at ambient temperature in KBr pellet.
- 10. Fig. S10. FT-IR Spectra of [Co(PATA)]²⁺ at ambient temperature in KBr pellet.
- 11. Fig. S11. FT-IR Spectra of [Ni(PATA)]²⁺ at ambient temperature in KBr pellet.
- 12. **Fig. S12**. Detection of exchangeable protons bound to the Co(II) ion in the [Co(PATA)]²⁺ complex using 400 MHz ¹H NMR (inset represents the aliphatic region and * mark indicates the bound amide protons).
- Fig. S13. Temperature variation ¹H NMR spectra of [Co(PATA)]²⁺ complex in D₂O solvent.
- 14. Fig. S14. Variable pH ¹H NMR of complex [Co(PATA)]²⁺ in water solvent with 20 mM HEPES and 100 mM NaCl. All spectra were recorded at 37 °C and D₂O containing sealed capillary was used for locking purposes.

- 15. Fig. S15. ¹H NMR metal dissociation studies of the [Co(PATA)]²⁺ complex in the presence of Zn²⁺ ions (a) full range spectra and (b) aliphatic regions at 0 h, 12 h, and 24 h. The spectra were recorded in D₂O solvent, maintaining a pD of nearly 7.4.
- 16. Fig. S16. Detection of exchangeable protons bound to the Ni(II) ion in the [Ni(PATA)(OH₂)]²⁺ complex using 400 MHz¹H NMR NMR (inset represents the aliphatic region and * mark indicates the bound amide protons).
- 17. Fig. S17. CEST spectra of the complex [Ni(PATA)(OH₂)]²⁺ (10 mM) with 20 mM HEPES buffer and 100 mM NaCl at 37 °C by maintaining a pH value of 7.4. The experiment was carried out at 25 μT with a 4 s presaturation pulse.
- 18. Fig. S18. Variable-pH magnetic moment data for the metal complex [Co(PATA)]²⁺ in an aqueous medium containing 20 mM HEPES and 100 mM NaCl was obtained with the help of Evans' method. ¹H NMR of all the samples was recorded at 37 °C.
- 19. Fig. S19. UV spectra of PATA, [Co(PATA)]²⁺, and [Ni(PATA)(OH₂)]²⁺, recorded at 30 μM concentration in an aqueous medium containing 20 mM HEPES and 100 mM NaCl at room temperature.
- 20. Fig. S20. UV-Vis spectra of [Co(PATA)]²⁺, and [Ni(PATA)(OH₂)]²⁺, recorded at 10 mM concentration in an aqueous medium containing 20 mM HEPES and 100 mM NaCl at room temperature.
- 21. Fig. S21. Metal displacement reaction of the [Co(PATA)]²⁺ complex with competing Cu(II) ions, monitored for 8 hours at 260 nm. Samples containing 50 μM [Co(PATA)]²⁺ with 1, 2, and 5 equivalent ratios of CuCl₂ salt in aqueous solutions containing 20 mM HEPES and 100 mM NaCl buffered at pH 7.4. A 50 μM [Cu(PATA)]²⁺ sample is present to determine the absorbance of a 100% dissociation.
- 22. Fig. S22. UV-Vis kinetic study of the complex [Co(PATA)]²⁺ at 260 nm in acidic conditions, pH 4, and in the presence of competing anions, 25 mM K₂CO₃ and 0.4 mM K₂HPO₄.
- 23. Fig. S23. Cyclic voltammogram of [Co(PATA)]²⁺ complex at glassy carbon electrode in H₂O solvent/ 0.1 M KCl, reference electrode- Ag/Ag⁺ at scan rate 100 mV/s.
- 24. Table S1. Selected bond length and bond angles of the PATA-Co complex.

Fig. S1. ¹H NMR (400 MHz) of compound **7** in CDCl₃ (* mark indicates the residual peak of the solvent).

Fig. S2. ¹³C NMR (100 MHz) of compound 7 in CDCl₃ (* mark indicates the residual peak of the solvent).

Fig. S3. ¹H NMR (400 MHz) of PATA in DMSO-d₆ (* mark indicates the residual peak of the solvent).

Fig. S4. ¹³C NMR (100 MHz) of PATA in DMSO- d_6 (* mark indicates the residual peak of the solvent).

Fig. S5. HRMS spectrum of the compound 7.

Fig. S6. HRMS spectrum of the ligand PATA.

Fig. S7. HRMS spectrum of [Co(PATA)]²⁺.

Fig. S8. HRMS spectrum of [Ni(PATA)]²⁺.

Fig. S9. FT-IR spectrum of PATA at ambient temperature in KBr pellet.

Fig. S10. FT-IR spectrum of [Co(PATA)]²⁺ at ambient temperature in KBr pellet.

Fig. S11. FT-IR spectrum of [Ni(PATA)]²⁺ at ambient temperature in KBr pellet.

Fig. S12. Detection of exchangeable protons bound to the Co(II) ion in the [Co(PATA)]²⁺ complex using 400 MHz ¹H NMR (inset represents the aliphatic region and * mark indicates the bound amide protons).

Fig. S13. Temperature variation ¹H NMR spectra of [Co(PATA)]²⁺ complex in D₂O solvent.

Fig. S14. Variable pH ¹H NMR of complex $[Co(PATA)]^{2+}$ in water solvent with 20 mM HEPES and 100 mM NaCl. All spectra were recorded at 37 °C and D₂O containing sealed capillary was used for locking purposes.

Fig. S15. ¹H NMR metal dissociation studies of the $[Co(PATA)]^{2+}$ complex in the presence of Zn^{2+} ions (a) full range spectra and (b) aliphatic regions at 0 h, 12 h, and 24 h. The spectra were recorded in D₂O solvent, maintaining a pD of nearly 7.4.

Fig. S16. Detection of exchangeable protons bound to the Ni(II) ion in the $[Ni(PATA)(OH_2)]^{2+}$ complex using 400 MHz ¹H NMR NMR (inset represents the aliphatic region and * mark indicates the bound amide protons).

Fig. S17. CEST spectra of the complex $[Ni(PATA)(OH_2)]^{2+}$ (10 mM) with 20 mM HEPES buffer and 100 mM NaCl at 37 °C by maintaining a pH value of 7.4. The experiment was carried out at 25 µT with a 4 s presaturation pulse.

Fig. S18. Variable-pH magnetic moment data for the metal complex $[Co(PATA)]^{2+}$ in an aqueous medium containing 20 mM HEPES and 100 mM NaCl was obtained with the help of Evans' method. ¹H NMR of all the samples was recorded at 37 °C.

Fig. S19. UV spectra of PATA, $[Co(PATA)]^{2+}$, and $[Ni(PATA)]^{2+}$, recorded at 30 μ M concentration in an aqueous medium containing 20 mM HEPES and 100 mM NaCl at room temperature.

Fig. S20. UV-Vis spectra of [Co(PATA)]²⁺ and [Ni(PATA)]²⁺, were recorded at 10 mM concentration in an aqueous medium containing 20 mM HEPES and 100 mM NaCl at room temperature.

Fig. S21. Metal displacement reaction of the $[Co(PATA)]^{2+}$ complex with competing Cu(II) ions, monitored for 8 hours at 260 nm. Samples containing 50 μ M $[Co(PATA)]^{2+}$ with 1, 2, and 5 equivalent ratios of CuCl₂ salt in aqueous solutions containing 20 mM HEPES and 100 mM NaCl buffered at pH 7.4. A 50 μ M $[Cu(PATA)]^{2+}$ sample is present to determine the absorbance of a 100% dissociation.

Fig. S22. UV-Vis kinetic study of the complex $[Co(PATA)]^{2+}$ at 260 nm in acidic conditions, pH 4, and in the presence of competing anions, 25 mM K₂CO₃ and 0.4 mM K₂HPO₄.

Fig. S23. Cyclic voltammogram of $[Co(PATA)]^{2+}$ complex at glassy carbon electrode in H₂O solvent/ 0.1 M KCl, reference electrode- Ag/Ag⁺ at scan rate 100 mV/s.

Bond Lengths		Bond Angles	
Co(1)-O(4)			
Co(1)-O(1)			
Co(1)-N(1)			
Co(1)-O(2)			
Co(1)-N(4)			
Co(1)-N(2)			

 Table S1. Selected bond length and bond angles of the PATA-Co complex.