Supporting Information

5

Thiacalix[4]arene-protected alkynyl Ag_n (n = 9, 18) nanoclusters: Syntheses, structural characterizations, photocurrent responses and fluorescence properties

10

Wen-Xuan Xie,‡ Chun-Hui Xue,‡ Meng Liu, Kun Zhou,*a Hui-Hao Gu, Jiu-Yu Ji, Bao-Kuan Chen,*a Na Liu, Yan-Feng Bi*a

School of Petrochemical Engineering, School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113001, China. Tel/Fax: (+86) -24-56861709; E-mail: <u>zhouk800@nenu.edu.cn</u>, <u>chenbaokuan@lnpu.edu.cn</u>, <u>biyanfeng@lnpu.edu.cn</u>

15

X-ray crystallography

Crystal data and structure refinements for Ag₉ and Ag₁₈ are listed in Table S1. Selected bond lengths, Ag...Ag interactions (Å) data and bond angles for Ag₉ are listed in Table S2-Table S4. Selected bond lengths, Ag...Ag interactions (Å) data and bond angles for Ag₁₈ are listed in Table 5 S5-Table S7. Comparation of the average Ag...Ag interactions (Å) and the average bond distances (Å) of important bonds in Ag₉ and Ag₁₈ are listed in Table S8 and Table S9, respectively.

	Ag_9	Ag_{18}
Formula	$C_{134}H_{180}Ag_{18}F_6Na_4O_{25}S_8Sb$	$C_{136}H_{176}Ag_{18}F_6O_{16}S_8$
Formula weight	4716.62	4378.90
Crystal system	Orthorhombic	Monoclinic
Space group	I mmm	C 2/m
<i>a</i> (Å)	15.2729(8)	22.163(2)
<i>b</i> (Å)	15.4945(8)	21.603(2)
<i>c</i> (Å)	39.339(2)	19.2809(18)
α (Å)	90	90
β (Å)	90	119.703(3)
γ (Å)	90	90
V (Å ³)	9309.4(8)	8018.5(14)
Z	2	2
Dc/g cm ⁻³	1.683	1.814
μ/mm^{-1}	2.144	2.306
F(000)	4614	4296
Reflection collected	15445	28325
Unique reflections	4495	7220
Parameters	318	641
R _{int}	0.0331	0.0841
GOF	1.111	1.046
$R_1^{a} [I > 2\sigma(I)]$	0.0687	0.0550
wR_2^{b} (all data)	0.1849	0.1499

Table S1. Crystal data, data collection and structure refinement details for Ag₉ and Ag₁₈

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; \ {}^{b}wR_{2} = \{\Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}] \}^{1/2}$

Bond	Bond length	Bond	Bond length
Ag(1)-C(15)	2.243(10)	Ag(2)-O(2)#1	2.395(9)
Ag(1)-O(2)	2.433(4)	Ag(2)-O(2)	2.395(9)
Ag(1)-O(1)	2.441(4)	Ag(3)-C(15)	2.129(11)
Ag(1)-S(1)	2.484(2)	Ag(3)-C(15)#2	2.129(11)
Ag(1)-C(16)	2.486(9)	Ag(3)-O(3)	2.41(3)
Ag(2)-O(1)#1	2.342(10)	Ag(4)-C(15)	2.171(13)
Ag(2)-O(1)	2.342(10)	Ag(4)-C(15)#3	2.171(13)

Table S2. Selected bond distances (Å) data for Ag₉

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,z, #2 x,-y,z, #3 -x,y,z.

-			
	1		
		Į	
-	1		

Table S3. Ag...Ag interactions (Å) data for Ag₉

Metal…metal contact	Distance	Metal…metal contact	Distance	
Ag(1)-Ag(3)	3.1848(12)	Ag(3)-Ag(4)	2.8341(15)	
Ag(1)- $Ag(4)$	3.2188(13)	Ag(3)-Ag(4)#1	2.8341(15)	
Ag(1)- $Ag(2)$	3.2591(10)	Ag(4)-Ag(4)#1	3.331(3)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,z.

Table S4. Selected bond angle (°) data for Ag₉

Bond	Bond angle	Bond	Bond angle
C(15)-Ag(1)-O(2)	116.3(4)	O(1)#1-Ag(2)-O(1)	178.9(4)
C(15)-Ag(1)-O(1)	115.0(3)	O(1)#1-Ag(2)-O(2)#1	90.000(3)
O(2)-Ag(1)-O(1)	86.8(3)	O(1)-Ag(2)-O(2)#1	90.000(2)
C(15)-Ag(1)-S(1)	160.6(3)	O(1)#1-Ag(2)-O(2)	90.000(2)
O(2)-Ag(1)-S(1)	77.37(18)	O(1)-Ag(2)-O(2)	90.000(2)
O(1)-Ag(1)-S(1)	77.89(18)	O(2)#1-Ag(2)-O(2)	180.0(4)
C(15)-Ag(1)-C(16)	28.7(4)	C(15)-Ag(3)-C(15)#2	169.8(7)
O(2)-Ag(1)-C(16)	120.4(3)	C(15)-Ag(3)-O(3)	94.5(4)
O(1)-Ag(1)-C(16)	139.9(3)	C(15)#2-Ag(3)-O(3)	94.5(4)
S(1)-Ag(1)-C(16)	133.1(3)	C(15)-Ag(4)-C(15)#3	155.3(6)

¹⁰ Symmetry transformations used to generate equivalent atoms: #1 -x,-y,z, #2 x,-y,z, #3 -x,y,z.

Bond	Bond length	Bond	Bond length
Ag(1)-C(21)	2.224(12)	Ag(4)-O(2)	2.400(6)
Ag(1)-O(1)#1	2.447(5)	Ag(4)-C(28)	2.45(3)
Ag(1)-O(1)	2.447(5)	Ag(4)-O(1)#1	2.454(6)
Ag(1)-S(1)	2.501(3)	Ag(4)-S(2)	2.514(2)
Ag(1)-C(22)	2.508(18)	Ag(5)-C(27)	1.91(5)
Ag(1)-C(22)#1	2.508(18)	Ag(5)-C(33)	2.297(12)
Ag(2)-O(1)#1	2.367(6)	Ag(5)-C(34)#1	2.71(2)
Ag(2)-O(1)	2.367(6)	Ag(6)-C(27)	1.89(4)
Ag(2)-O(2)#1	2.415(6)	Ag(6)-C(21)	2.048(12)
Ag(2)-O(2)	2.415(6)	C(21)-Ag(6A)#1	2.345(11)
Ag(3)-C(33)	2.294(12)	C(21)-Ag(6A)	2.345(11)
Ag(3)-C(34)#1	2.330(18)	C(33)-Ag(5A)#1	2.059(10)
Ag(3)-C(34)	2.330(18)	C(33)-Ag(5A)	2.059(10)
Ag(3)-O(2)	2.397(6)	C(33)-Ag(6A)#3	2.566(11)
Ag(3)-O(2)#1	2.397(6)	C(33)-Ag(6A)#2	2.566(11)
Ag(3)-S(3)	2.506(3)	O(3)-Ag(6A)	2.33(2)
Ag(4)-C(27A)	2.24(3)	O(4)-Ag(5A)#2	2.361(17)
Ag(4)-C(27)	2.33(4)	C(27A)-Ag(5A)	2.22(3)
Ag(4)-C(28A)	2.36(3)	C(27A)-Ag(6A)	2.52(2)

Table S5. Selected bond distances (Å) data for Ag₁₈

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z, #2 -x+1,y,-z+1, #3 -x+1,-y+1,-z+1.

Metal…metal contact	Distance	Metal…metal contact	Distance
Ag(1)-Ag(6)#1	3.1187(17)	Ag(4)-Ag(5)	3.222(5)
Ag(1)-Ag(6)	3.1187(17)	Ag(4)-Ag(5A)	3.323(4)
Ag(1)- $Ag(2)$	3.2534(14)	Ag(5)-Ag(6)	2.441(3)
Ag(2)-Ag(3)	3.2266(15)	Ag(5)-Ag(5)#1	2.758(10)
Ag(2)-Ag(4)	3.2784(9)	Ag(5)-Ag(5)#2	2.938(9)
Ag(2)-Ag(4)#1	3.2785(9)	Ag(6)-Ag(6)#1	2.286(3)
Ag(3)-Ag(5A)#1	3.043(4)	Ag(5A)-Ag(6A)#2	2.932(4)
Ag(3)-Ag(5A)	3.043(4)	Ag(5A)-Ag(5A)#1	3.103(9)
Ag(3)-Ag(5)#1	3.219(4)	Ag(5A)-Ag(5A)#2	3.209(8)
Ag(3)-Ag(5)	3.219(4)	Ag(6A)-Ag(6A)#1	2.823(4)
Ag(4)-Ag(6)	3.1013(16)		

Table S6. Ag...Ag interactions (Å) data for Ag₁₈

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z, #2 -x+1,y,-z+1.

Table S7. Selected bond angle (°) data for Ag ₁₈			
Bond	Bond angle	Bond	Bond angle
C(21)-Ag(1)-O(1)#1	113.2(3)	C(33)-Ag(3)-S(3)	151.2(4)
C(21)-Ag(1)-O(1)	113.2(3)	C(34)#1-Ag(3)-S(3)	124.5(5)
O(1)#1-Ag(1)-O(1)	87.2(3)	C(34)-Ag(3)-S(3)	124.5(5)
C(21)-Ag(1)-S(1)	164.7(4)	O(2)-Ag(3)-S(3)	78.40(14)
O(1)#1-Ag(1)-S(1)	77.31(13)	O(2)#1-Ag(3)-S(3)	78.40(14)
O(1)-Ag(1)-S(1)	77.31(14)	C(27A)-Ag(4)-C(28A)	29.8(10)
C(21)-Ag(1)-C(22)	29.6(5)	C(27A)-Ag(4)-O(2)	113.8(8)
O(1)#1-Ag(1)-C(22)	138.5(5)	C(27)-Ag(4)-O(2)	112.3(12)
O(1)-Ag(1)-C(22)	119.5(5)	C(28A)-Ag(4)-O(2)	141.9(7)
S(1)-Ag(1)-C(22)	135.9(5)	C(27)-Ag(4)-C(28)	33.5(12)
C(21)-Ag(1)-C(22)#1	29.6(5)	O(2)-Ag(4)-C(28)	132.1(7)
O(1)#1-Ag(1)-C(22)#1	119.5(5)	C(27)-Ag(4)-O(1)#1	109.9(11)
O(1)-Ag(1)-C(22)#1	138.5(5)	O(2)-Ag(4)-O(1)#1	87.9(2)
S(1)-Ag(1)-C(22)#1	135.9(5)	C(28)-Ag(4)-O(1)#1	128.2(7)
C(22)-Ag(1)-C(22)#1	21.4(10)	C(27A)-Ag(4)-S(2)	161.7(6)
O(1)#1-Ag(2)-O(1)	91.0(3)	C(27)-Ag(4)-S(2)	167.4(11)
O(1)#1-Ag(2)-O(2)#1	175.71(19)	C(28A)-Ag(4)-S(2)	134.4(8)
O(1)-Ag(2)-O(2)#1	89.61(19)	O(2)-Ag(4)-S(2)	77.97(14)
O(1)#1-Ag(2)-O(2)	89.61(19)	C(28)-Ag(4)-S(2)	134.1(7)
O(1)-Ag(2)-O(2)	175.71(19)	O(1)#1-Ag(4)-S(2)	76.70(13)
O(2)#1-Ag(2)-O(2)	89.5(3)	C(27)-Ag(5)-C(33)	170.4(14)
C(33)-Ag(3)-C(34)#1	32.9(5)	C(27)-Ag(5)-C(34)#1	142.2(14)
C(33)-Ag(3)-C(34)	32.9(5)	C(33)-Ag(5)-C(34)#1	28.8(5)
C(34)#1-Ag(3)-C(34)	48.7(11)	C(27)-Ag(6)-C(21)	156.9(15)
C(33)-Ag(3)-O(2)	120.1(2)	C(33)-Ag(5A)-C(27A)	169.0(7)
C(34)#1-Ag(3)-O(2)	107.7(6)	C(33)-Ag(5A)-O(4)#2	95.9(5)
C(34)-Ag(3)-O(2)	152.7(5)	O(3)-Ag(6A)-C(21)	112.0(7)
C(33)-Ag(3)-O(2)#1	120.1(2)	O(3)-Ag(6A)-C(27A)	113.1(10)
C(34)#1-Ag(3)-O(2)#1	152.7(5)	C(21)-Ag(6A)-C(27A)	115.9(6)
C(34)-Ag(3)-O(2)#1	107.7(6)	C(21)-Ag(6A)-C(33)#3	106.6(3)
O(2)-Ag(3)-O(2)#1	90.4(3)		

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z, #2 -x+1,y,-z+1, #3 -x+1,-y+1,-z+1.

	Ag ₅ @TC4A	$Ag_4@(^{t}BuC\equiv C)_4$	Between $Ag_5@TC4A$ and $Ag_4@('BuC=C)_4$	Between Ag ₉ and Ag ₉
Ag ₉	3.259 Å	3.000 Å	3.202 Å	6.500 Å
Ag ₁₈	3.259 Å	2.648 Å	3.156 Å	3.083 Å

Table S8. Comparation of the average Ag…Ag interactions (Å) in Ag₉ and Ag₁₈

5 Table S9. Comparation of the average bond distances (Å) of important bonds in Ag₉ and Ag₁₈

	The Ag-S bond in Ag₅@TC4A	The Ag-O bond in Ag₅@TC4A	The Ag-C bond in Ag₄@('BuC≡C)₄	The Ag-O bond attached to CH ₃ OH/CF ₃ COO ⁻
Ag ₉	2.484 Å	2.391 Å	2.222 Å	2.410 Å (CH ₃ OH)
Ag ₁₈	2.507 Å	2.411 Å	2.309 Å	2.346 Å (CF ₃ COO⁻)

Fig. S1 30% Ellipsoid representations of Ag₉ containing all disordered atoms. All the hydrogen atoms have been omitted.

As shown in Fig. S2, although Sb1 is still highly over-assigned, both of the charge conservation and 5 the rationality of crystal data refinement have been taken into consideration, the assignment of atom Sb1 is reasonable.

Fig. S2 The residual density plot of Ag₉.

Fig. S3 (a) XPS peak of Ag 3d in Ag₉. (b) XPS peak of Sb 3d in Ag₉. (c) XPS peak of F 1s in Ag₉.

Fig. S4 (a) Side view of two $[Ag_9(TC4A)(^BuC\equiv C)_4(CH_3OH)_2]^+$ cationic cluster in Ag_9 and the grey cone representation of the TC4A⁴⁻ ligand, and the Ag···Ag distances between the two Ag₉ cores drawn in dotted lines. (b) The two Ag₉ cores in Ag₉, and the Ag···Ag distances between the two Ag₉ cores drawn in dotted lines. Color code: Ag, turquoise, pink; O, red; S, yellow; C, gray-50%.

Fig. S5 30% Ellipsoid representations of Ag_{18} containing all disordered atoms. All the hydrogen atoms have been omitted.

5

Fig. S6 (a) XPS peak of Ag 3d in Ag₁₈. (b) XPS peak of F 1s in Ag₁₈.

¹H NMR

MALDI-TOF mass spectrometry

Fig. S9 The full range file of MALDI-TOF MS of the $[Ag_9(TC4A)(^{t}BuC\equiv C)_4]^+$ cluster in Ag₉.

5 Fig. S10 The full range file of MALDI-TOF MS of the $[Ag_9(TC4A)(BuC=C)_4]_2^{2+}$ cluster in Ag_{18} . S11

PXRD Measurements

The experimental powder X-ray diffraction patterns of the two compounds are in accordance with the simulated ones from the single crystal X-ray data, confirming the phase purity of the samples.

FT-IR Spectra

TG-DSC Analyses

As shown in Fig. S16, the weight loss of Ag_{18} from room temperature to 220 °C could be attributed to 5 the loss of CH₃OH molecules attached to the crystal surface. From 220 °C to 290 °C, there is a sharp drop in weight due to the shed of tert-butyl acetylene ligands and CF₃COO⁻ ligands. After 290 °C, the weight decreased sharply, which can be attributed to the decomposition of thiacalix[4]arene ligands and the collapse of the skeleton of Ag_{18} .

Photocurrent measurement

The photocurrent test was carried out on a CHI660E electrochemistry workstation^{1,2} and in a typical three-electrode system. The crystals (10 mg) of Ag_9 and Ag_{18} were dispersed in 1 mL trichloromethane, the mixture was sonicated for about 30 min. Then a 20 µL solution was 5 transferred by pipetting gun dropped on the cleaned FTO glass, which apply three to five times in the same way after evaporation under ambient atmosphere. Then a conductive layer of $0.8 \times 1 \text{ cm}^2$ compounds made of AB glue were transferred into a drying oven and kept at 80 °C for 10 h. The coated film was obtained. The prepared FTO glass film was used as working electrode, platinum wire as the counter electrode, Ag/AgCl as the reference electrode and keeping the bias voltage at 10 0.6 V, and a 0.2 M Na₂SO₄ aqueous solution was used as the electrolyte.

Reference:

15 1.Z. Wang, H.-F. Su, Y.-W. Gong, Q.-P. Qu, Y.-F. Bi , C.-H. Tung, D. Sun and L.-S. Zheng, *Nat. Commun.*, 2020, **11**, 308.

2.P.-P. Zhang, J. Peng, H.-J. Pang, J.-Q. Sha, M. Zhu, D.-D. Wang and M.-G. Liu, *CrystEngComm*, 2011, **13**, 3832–3841.