Supplementary Information

High specific capacity FeFe(CN)₆ as the cathode materials in aqueous rechargeable zinc-sodium hybrid batteries

Chaoqiao Yang^a, Shuang Ding^a, Ya Zhao^a, Jinxia Zhou^a, Lin Li^b, Jiaxin Fan^{b,*}

^aCollege of Environmental and Chemical Engineering, Dalian University, Dalian,

116622, Liaoning, China

^bSchool of Chemistry and Materials Engineering, Liupanshui Normal University,

Liupanshui, 553004, Guizhou, China

*Corresponding author: fmf_fjx@163.com.

Methods	ICP-OES		Elemental analysis		TG
Elements	K	Fe	С	Ν	H ₂ O
Weight %	0	39.64	20.31	24.21	15.84

Table S1. Elemental contents of $FeFe(CN)_6$ sample.

FeFe(CN)₆ Synthesis Reaction:

The reaction of $K_3Fe(CN)_6$ and $FeCl_3 \cdot 6H_2O$ to form $FeFe(CN)_6$ is given below:

$$K_{3}Fe(CN)_{6} + FeCl_{3} \cdot 6H_{2}O \rightarrow FeFe(CN)_{6} \downarrow + 3KCl + 6H_{2}O$$
(S1)

Side Reaction: Fe²⁺ and Fe^{II}(CN)₅³⁻ Formation

$$Fe^{3+} + Fe^{III}(CN)_6^{3-} + 2H_2O \rightarrow Fe^{2+} + Fe^{II}(CN)_5^{3-} + NH_4^+ + CO_2$$
 (S2)

Fig. S1. The structure of $FeFe(CN)_6$.

Fig. S2. The structure of CN triple bonds in $FeFe(CN)_6$.

Fig. S3. N₂ adsorption-desorption isotherm and pore-size distribution curve of FeFe(CN)₆.

Fig. S4. (a) CV and (b) EIS curves of FeFe(CN)₆ after 200 cycles in different electrolytes.

Fig. S5. Cycling performance of $Zn//FeFe(CN)_6$ battery at 1C in different electrolytes: (a) 1 M

ZnSO₄ electrolyte; (b) 1 M Na₂SO₄ electrolyte; (c) 0.5 M ZnSO₄+0.5 M Na₂SO₄ electrolyte; (d)

0.1 M ZnSO₄+2 M Na₂SO₄ electrolyte.

Fig. S6. Electrochemical performances of Zn//FeFe(CN)₆ cells in 0.1 M ZnSO₄+1 M Na₂SO₄ electrolyte. (a) Cycling performance at 15C for 200 cycles; (b)GCD curves in different cycles at

Fig. S7. Charge-discharge curves of Zn//FeFe(CN)₆ cells in 0.1 M ZnSO₄+1 M Na₂SO₄ electrolyte.

(a) The voltage-time and (b) voltage-specific capacity.

Fig. S8. (a) XRD patterns of the FeFe(CN)₆ electrodes under different states after testing in the 0.1M ZnSO₄+1 M Na₂SO₄ electrolyte; (b-d) The magnifications of (200), (220) and (400) peaks.

Fig. S9. XPS spectra of high resolution Fe 2p (a), Na 1s (b), and Zn 2p (c) in the FeFe(CN)₆

electrodes at different states; (d) Comparison of Na1s and Zn2p when the FeFe(CN)₆ electrode is

discharged to 0.1V.

Fig. S10. XPS spectra of high resolution C 1s and N 1s in the FeFe(CN)₆ electrodes.

Table S2. Comparison of the electrochemical performances of the $Zn//FeFe(CN)_6$ with

Materials	ElectrolyteSpecific capacityat x A g^{-1}		Capacity retention at y A g ⁻¹ after <i>n</i> cycles	Ref.
CuFe(CN) ₆	0.02 M ZnSO ₄	53 (<i>x</i> =0.06)	96% (<i>n</i> =100, <i>y</i> =60)	1
$Zn_3[Fe(CN)_6]_2$	3 M ZnSO ₄	66.5 (<i>x</i> =0.06)	81% (<i>n</i> =200, <i>y</i> =0.3)	2
$Zn_3[Fe(CN)_6]_2$	1 M ZnSO ₄	65.4 (<i>x</i> =0.06)	80% (<i>n</i> =200, <i>y</i> =0.3)	3
Na ₂ MnFe(CN) ₆	1 M ZnSO ₄ with sodium dodecyl sulfate	140 (<i>x</i> =0.16)	75% (<i>n</i> =2000, <i>y</i> =0.8)	4
CuFe(CN) ₆	1 M Na ₂ SO ₄ +0.01 M H ₂ SO ₄	60 (<i>x</i> =0.06)	97% (<i>n</i> =500, <i>y</i> =0.3)	5
NiFe(CN) ₆	0.5 M Na ₂ SO ₄ +50*10 ⁻³ M ZnSO ₄	76.2 (<i>x</i> =0.1)	81% (<i>n</i> =1000, <i>y</i> =0.5)	6
FeFe(CN) ₆	0.1 M ZnSO ₄ +1 M Na ₂ SO ₄	165.2 (0.1C)	84% (<i>n</i> =200, <i>y</i> =15C)	This work

other reported Zinc-ion batteries.

Table S3: The fitting results of the EIS data according to the equivalent circuit of

			0.5 M	0.1 M	0.1 M
Components	1 M ZnSO ₄	1 M Na ₂ SO ₄	ZnSO ₄ + 0.5	ZnSO ₄ +1 M	ZnSO ₄ +2 M
			M Na ₂ SO ₄	Na ₂ SO ₄	Na ₂ SO ₄
R _s (ohm*g)	3.54*10-3	1.57*10-3	1.90*10-3	5.24*10-3	1.40*10-3
$C_{f}(F)$	5.50*10-7	5.54*10-6	4.90*10-6	4.43*10-6	4.44*10-6
R _f (ohm*g)	1.74*10-13	3.47*10-9	4.05*10-3	6.90*10-3	1.18*10-2
Q-Y _o	2.90*10-5	3.92*10-4	1.97*10-4	3.70*10-4	4.15*10-4
Q-n	0.69	0.43	0.61	0.53	0.51
R _{ct} (ohm*g)	180.6	3.79	0.57	0.70	1.72
W	1.76*108	1.03*10-2	1.53*107	1.65*10-2	2.67*10-3

[R(C[R(Q[RW])])], fitted by Zsimpwin software.

Supplementary References:

- 1 R. Trócoli and F. La Mantia, ChemSusChem, 2015, 8, 481-485.
- 2 L. Zhang, L. Chen, X. Zhou and Z. Liu, Sci Rep, 2015, 5, 18263.
- 3 L. Zhang, L. Chen, X. Zhou and Z. Liu, Adv. Energy Mater., 2015, 5, 1400930.

4 Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang and Y. Qian, J. Mater. Chem. A, 2017, 5, 730-738.

5 T. Gupta, A. Kim, S. Phadke, S. Biswas, T. Luong, B. J. Hertzberg, M. Chamoun, K. Evans-Lutterodt and D. A. Steingart, *Journal of Power Sources*, 2016, **305**, 22–29.

6 K. Lu, B. Song, J. Zhang and H. Ma, Journal of Power Sources, 2016, 321, 257-263.