Electronic Supplementary Information (ESI)

for

Co-Containing Metal-Organic Framework for High-Performance Asymmetric Supercapacitor with Functionalized Reduced Graphene Oxide

Soumen Khan,^{a,b} Sayan Halder,^a Santanu Chand,^c Anup Kumar Pradhan,^a and Chanchal Chakraborty^{*,a,b}

^a Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani,

Hyderabad Campus. Jawaharnagar, Samirpet, Hyderabad, Telangana 500078, India.

^b Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India

°Department of Applied Chemistry, Graduate School of Engineering, The University of

Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

*Corresponding Author: Chanchal Chakraborty

E-mail: chanchal@hyderabad.bits-pilani.ac.in

ORCID ID: https://orcid.org/0000-0002-4829-1367

Synthesis of MOF:

Scheme. S1 Synthesis of Co-MOF

At first, two 100 ml beaker were taken. 4 g (33.87 mmol) of succinic acid and 3.8 g (67.74 mmol) of KOH were taken in one of the beakers and added with 15 mL of water. The solution was sonicated for 15 min to dissolve the materials to form a completely clear solution. The solution was then transferred into a 100 mL round bottom flask. In another beaker, 8.33 g (35 mmol) cobalt chloride [CoCl₂.6H₂O] and 10 mL of water were taken, followed by a sonication of 15 min to make a clear salt solution. The solution was then added drop by drop into that round bottom flask containing the ligand in a stirring condition. After addition, the solution was refluxed at 110°C for 24 hours to prepare the Co-MOF with a 92% yield.¹⁻³

Reduction and functionalization of GO with PPD:

To synthesize covalently bonded multi-layered p-phenylenediamine (PPD) functionalized reduced graphene oxide, graphene oxide was synthesized first from natural graphite flake using the modified Hummer's method.⁴

To prepare PPD-rGO,⁵ GO (60 mg) was dissolved and exfoliated in 120 mL of deionized water through ultrasonication. Subsequently, PPD (600 mg) and NH₃ solution (360 μ L) were added. The mixture was refluxed under stirring conditions at 95 °C for 3 h and filtrated with Whatman

41 filter paper. The residue was rinsed in ethanol and poured into ultrasonication for 3 minutes. To remove the physically absorbed PPD, we repeated it at least five times. Finally, the residue was dried in an oven at 80 °C for 24 h.

Scheme. S2 Synthesis of PPD-rGO from graphite flake.

Fig. S1. Comparison of XRD pattern of Co-MOF and 24 hours water treated Co-MOF.

Fig. S2. (a) TGA curve of Co-MOF. (b) N_2 adsorption-desorption isotherm of Co-MOF.

Fig. S3. The FESEM images of (a) GO and (b) PPD-rGO.

Fig. S4. (a) Comparison of the CV curves of bare Ni-foam and Co-MOF on nickel foam. (b) The GCD plots bare Ni-foam in a three-electrode system at a current density of 0.05 A/g to 0.25 A/g

Fig. S5. Two electrode CV study of supercapacitor formed by Co-MOF with counter bare Nifoam electrode: (a) CV curves at different scan rates at 10 mV/s to 50 mV/s; (b) GCD plot at a current density of 2 A g^{-1} to 10 A g^{-1} ; (c) corresponding specific capacitance of the supercapacitor at different current density (2 A g^{-1} to 10 A g^{-1}) in the two-electrode system.

Fig. S6. (a) CV curve of PPD-rGO in the potential window of -1.25 V to 0 V. (b) GCD plot PPD-rGO in the current density range of 3-8 A/g in a three-electrode system.

Table S1. Comparison of the specific capacitance value of Co-MOF with other reportedMOF-based electrodes.

	Potential		Specific	Current				
Materials	window	Electrolyte	Capacitance	Density	Ref.			
	(V)		(F g ⁻¹)	(A g ⁻¹)				
MOF as electrode material								
3D Cd-MOF	-0.8 to	1 M	647	4	[6]			
	0.4 V	NaOH/KOH/LiOH						
Co-MOF with H ₂ tpa	0-0.5	2 М КОН	384	6	[7]			
and dapz								
Zn-MOF	0-0.55		377	1	[8]			
3D Co-MOF with	0-0.4	6 М КОН	325	5	[9]			
ATA, bpdb								
3D Co-MOF-	0-0.5	2 М КОН	1240	7	[10]			
CoMn ₂ O ₄								
Co-MOF	0-0.35	6 M KOH	425	2	This Work			
MOF@graphene								
Mo-MeIm derived	0 - 0.8	PVA-H ₂ SO ₄	617	1	[11]			
MoO ₃ /RGO								
Cu-MOF@rGO	-1-0.2	1 M Na ₂ SO ₄	375	2	[12]			
Cu-MOF/rGO (SD)	-0.5-0.7	1 M Na ₂ SO ₄	685.33	1.6	[13]			
rGO/HKUST-1	-0.1-1	0.5 M Na ₂ SO ₄	385	1	[14]			
Co-MOF-RGO	0-0.6	6 M KOH	430	1	[15]			
Mn BTC derived	-0.1 - 0.9	1 M Na ₂ SO ₄	456	1	[16]			
Mn ₃ O ₄ /Graphene								
Co-MOF	0-0.35	6 M KOH	425	2	This Work			

Materials	Counter	ED	PD	References
	Materials	(Whkg ⁻¹)	(kWkg-1)	
3D Cd-MOF	Activated	11.25	0.50	[6]
	carbon (AC)			
Co-Ni-MOF	AC	20.94	0.75	[17]
Co-MOF with	AC	24.13	4.42	[7]
H ₂ tpa and dapz				
Zn-MOF	AC	13.3	7.44	[8]
3D Co-MOF	AC	50.03	2.31	[9]
with ATA,				
bpdb				
Cu-atrz-BDC	rGO	9.96	0.00081	[18]
Ni-MOF-	Ni-MOF-	8	0.5	[19]
derived nickel	derived nickel			
phosphate	phosphate			
Ce-MOF/GO	Pt-wire	11.96	4.497	[20]
Co(OH) ₂ -	Co(OH) ₂ -	13.3	24.00	[21]
Derived MOF	Derived MOF			
3D Co-MOF-	AC	38.54	3.21	[10]
CoMn ₂ O ₄				
Co-MOF	PPD-rGO	25.8	11.9	This Work
		(max.)	(max.)	

Table S2. Comparison of ED and PD of our ASC with other reports.

Fig. S7. CV curve after 2200 GCD cycle performance.

Fig. S8. The SEM images of Co-MOF (a) before and (b) after 2200 GCD cycles. The (c) PXRD and (d) FTIR study of Co-MOF before and after the GCD studies.

References

- C. Livage, C. Egger, and G. Ferey, Hydrothermal versus nonhydrothermal synthesis for the preparation of organic- inorganic solids: the example of cobalt (II) succinate. *Chem. Mater.*, 2001, 13, 410-414.
- Z. H. Zhou, J. M. Yang, and H. L. Wan, Diamine substitution reactions of tetrahydrate succinato nickel, cobalt, and zinc coordination polymers. *Crystal Growth & Design.*, 2005, 5, 1825-1830.
- T. M. Li, J. H. Han, B. Q. Hu, F. Yu, and B. Li, A highly active oxygen evolution electrocatalyst derived from Co/Ni-succinic acid framework under mild conditions. *CrystEngComm*, 2022, 24, 1453-1458.
- 4. B. Paulchamy, G. Arthi, and B. D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. *J. Nanomed. Nanotechnol.*, 2015, **6**,1.
- H. L. Ma, H. B. Zhang, Q. H. Hu, W. J. Li, Z. G. Jiang, Z. Z. Yu, and A. Dasari, Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites. *ACS Appl. Mater. Interfaces.*, 2012, 4, 1948-1953.
- R. Deka, R. Rajak, V. Kumar, and S. M. Mobin, Effect of Electrolytic Cations on a 3D Cd-MOF for Supercapacitive Electrodes. *Inorg. Chem.*, 2023, 62, 3084-3094.
- S. Sanati, R. Abazar, A. Morsali, A. M. Kirillov, P. C. Junk, and J. Wang, An asymmetric supercapacitor based on a non-calcined 3D pillared cobalt (II) metal– organic framework with long cyclic stability. *Inorg. Chem.*, 2019, 58, 16100-16111.
- 8. T. K. Ghosh, and G. R. Rao, Design and synthesis of mixed-ligand architectured Znbased coordination polymers for energy storage. *Dalton Trans.*, 2023, **52**, 5943-5955.
- 9. R. Abazari, S. Sanati, A. Morsali, A. Slawin, and C. L. Carpenter-Warren, Dualpurpose 3D pillared metal–organic framework with excellent properties for catalysis of

oxidative desulfurization and energy storage in asymmetric supercapacitor. ACS Appl. Mater. Interfaces., 2019, **11**, 14759-14773.

- 10. R. Abazari, S. Sanati, A. Morsali, and D. P. Dubal, High specific capacitance of a 3Dmetal–organic framework-confined growth in CoMn 2 O 4 nanostars as advanced supercapacitor electrode materials. *J. Mater. Chem.*, 2021, **9**, 11001-11012.
- 11. X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan, H. Zhang, Reduced Graphene Oxide-Wrapped MoO₃ Composites Prepared by Using Metal– Organic Frameworks as Precursor for All-Solid-State Flexible Supercapacitors, *Adv. Mater.*, 2015, 27, 4695-4701.
- A.K. Gupta, M. Saraf, P.K. Bharadwaj, S.M. Mobin, Dual Functionalized CuMOF-Based Composite for High-Performance Supercapacitors, *Inorg. Chem.*, 2019, 58, 9844-9854.
- M. Saraf, R. Rajak, S.M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors, *J. Mater. Chem. A*, 2016, 4, 16432-16445.
- 14. P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper, *Electrochim. Acta*, 2015, **157**, 69-77.
- 15. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, M.F. Mousavi, A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material, *Electrochim. Acta*, 2018, 275, 76-86.
- 16. K. Zhao, K. Lyu, S. Liu, Q. Gan, Z. He, Z. Zhou, Ordered porous Mn₃O4@N-doped carbon/graphene hybrids derived from metal–organic frameworks for supercapacitor electrodes, *J. Mater. Sci.*, 2017, **52**, 446-457.

- Inorg. Chem., 2019, 58, 16100-16111J. Sun, X. Yu, S. Zhao, H. Chen, K. Tao, and L. Han, Solvent-Controlled Morphology of Amino-Functionalized Bimetal Metal–Organic Frameworks for Asymmetric Supercapacitors. *Inorg. Chem.*, 2020, 59, 11385-11395.
- Ma, Y., Gao, G., Su, H., Rong, H., Lai, L. and Liu, Q., A Cu 4 cluster-based MOF as a supercapacitor electrode material with ultrahigh capacitance. *Ionics*, 2021, 27,1699-1707.
- R. Bendi, V. Kumar, V. Bhavanasi, K. Parida and P. S. Lee, Metal organic framework-derived metal phosphates as electrode materials for supercapacitors. *Adv. Energy Mater.*, 2016, 6, 1501833.
- 20. R. Ramachandran, W. Xuan, C. Zhao, X. Leng, D. Sun, D. Luo, and F. Wang, Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application. *RSC Adv.*, 2018, **8**, 3462-3469.
- 21. T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, and W. Zheng, Inverted Design for High-Performance Supercapacitor Via Co (OH) 2-Derived Highly Oriented MOF Electrodes. *Adv. Energy Mater.*, 2018, 8, 1702294.