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1. Experimental Section 

{Ir(ppy)2[phen(OH)2]}PF6 (Ir-1). 1H NMR (300 MHz, (CD3)2CO): δ 8.38 (2H, s, 5-, 6- 
H’s of phenathroline), 8.22 (2H, d, J = 8.1 Hz, two 6-pyridyl H’s of ppy), 7.89 (6H, m, two 
3-pyridyl H’s of ppy, two 4-pyridyl H’s of ppy and two 2-phenyl H’s of ppy), 7.80 (2H, d, 
J = 5.7 Hz, 3-, 8- H’s of phenathroline), 7.31 (2H, d, J = 6.1 Hz, 2-, 9- H’s of phenathroline), 
7.05 (4H, m, two 3-phenyl H’s of ppy and two 4-phenyl H’s of ppy), 6.93 (2H, m, two 5-
pyridyl H’s of ppy), 6.48 (2H, d, J = 7.4 Hz, two 5-phenyl H’s of ppy), 3.83 (s, 2H, OH). 
Positive-ion ESI-MS: m/z 713.2 [M]+; IR (KBr disc / cm–1): 3059 br (O-H), 831 (P-F). 

{Ir(ppy)2[(OMe)2phen]}PF6 (Ir-2). 1H NMR (300 MHz, CDCl3): δ 8.36 (2H, s, 5-, 6- H’s 
of phenathroline), 8.07 (2H, d, J = 6.0 Hz, two 6-pyridyl H’s of ppy), 7.89 (2H, d, J = 8.3 
Hz, 3-, 8- H’s of phenathroline), 7.70 (4H, d, J = 7.4 Hz, two 3-pyridyl H’s of ppy and two 
4-pyridyl H’s of ppy), 7.50 (2H, d, J = 6.1 Hz, two 2-phenyl H’s of ppy), 7.16 (2H, d, J = 
6.1 Hz, 2-, 9- H’s of phenathroline), 7.05 (2H, m, two 5-pyridyl H’s of ppy), 6.94 (4H, m, 
two 3-phenyl H’s of ppy and two 4-phenyl H’s of ppy), 6.41 (2H, d, J = 7.5 Hz, two 5-
phenyl H’s of ppy), 4.19 (6H, s, CH3). Positive-ion ESI-MS: m/z 741.2 [M]+; IR (KBr disc 
/ cm–1): 846 (P-F). 

Physical Measurements and Instrumentation.  
Instrumentation for NMR, IR, UV-vis diffuse reflectance, time-resolved emission and 
Raman spectroscopy, elemental analysis, TGA and ICP-OES are carried out according to 
our previously reported literature [1,2]. For Raman spectra, excitation beam (309 nm) is 
produced by a Nd:YAG laser (Spectra-Physics LAB-170). Solvent signals are subtracted 
and frequencies are calibrated by methanol Raman bands. 
 
The concentrations of TMA·HCl are quantified by LC-MS using Agilent 1200 HPLC 
equipped with Sciex API 2000 MS/MS system. Ethyl bromoacetate was used to derivatize 
TMA, to improve ESI-MS/MS detection and separation of TMA. A portion of 125 μL 
supernatant was mixed with 425 μL of 20% concentrated ammonium solution, 
triethylamine (TEA) as an internal standard in acetonitrile and 100 μL of 4.0 M ethyl 
bromoacetate in acetonitrile. The mixture was stand overnight at 25 °C. Thereafter, 250 μL 
of MeCN/Milli-Q water/HCOOH (50:50:1 v/v/v) was added to terminate the reaction. The 
solution was ready for LC-MS/MS analysis. The chromatographic separation was 
performed using a Water HILIC silica column (3 μm, 2.1 × 100 mm) with isocratic elution 
using 10 mM HCOONH4 in water / 0.1% HCOOH in MeCN (v/v 1:9) as eluent (flow rate: 
400 μL/min). The LC-MS calibration curve is shown below:  
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Emission quenching experiments with different concentrations of TMA⋅HCl are conducted 
in a quartz cell, degassed by bubbling argon. The quenching rate constants are calculated 
through the Stern-Volmer equation:  

τ0/τ = 1 + kqτ0[Q] 
τ0 and τ are emission lifetimes without and with quencher, [Q] is quencher concentration 
in mol dm-3, and kq is the bimolecular quenching rate constant.  
 
 
TMA-sensing study 
The emission titration was performed on an Edinburgh Instruments FLS980 spectrometer. 
The PTMA-Ir suspended in an aqueous solution was incubated with different 
concentrations of TMA⋅HCl for 2 hours, and degassed before the emission measurement. 
To test the amine vapor sensing, PTMA-Ir adsorbed on filter paper (T-Ir) was prepared 
by dipping a filter paper strip (23 mm × 13mm) on a PTMA-Ir-suspended solution (1 mg 
PTMA-Ir in 10 mL n-hexane). The emission of PTMA-Ir on T-Ir in a closed quartz 
cuvette with different concentrations of TMA vapor prepared by the injection of saturated 
TMA vapor was examined. Saturated TMA vapor is prepared by dissolving TMA⋅HCl (1 
g) in NaOH solution (600 mg NaOH in 10 mL milliQ water) in a closed system at 25 oC 
for 3 hours. The injected TMA contents are verified by FT-IR spectroscopy with a 10-cm 
infrared gas cell according to the peak area at 1459 cm–1 as shown in the following figures. 
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(a) FT-IR spectra and (b) calibration curve of TMA vapor (25 oC). 

 

 

  



 

S4 

2. Supplementary figures 

 

 

 
Fig. S1  SEM images of (a) PTMA and (b) PTMA-Ir. 
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Fig. S2 SEM images of the control polymers without TMA-imprinting cavities (P and 
P-Ir) prepared according to identical synthetic procedures for PTMA and 
PTMA-Ir except no imprinting template was used in the synthesis. 
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Fig. S3  UV-vis reflectance spectra of PTMA, Ir-2 and PTMA-Ir deposited on a 
quartz plate with a 1-cm circular recess. 
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Fig. S4  FT-IR spectra of PTMA and PTMA-Ir. 
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Fig. S5 (a) XPS survey spectrum of PTMA and deconvoluted fittings of the high 

resolution (b) C 1s, (c) O 1s and (d) Cl 2p signals. 
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Fig. S6 (a) XPS survey spectrum of PTMA-Ir and deconvoluted fittings of the high 

resolution (b) C 1s, (c) O 1s, (d) N 1s and (e) Ir 4f signals. 
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Fig. S7 Nanosecond time-resolved emission spectra of PTMA-Ir suspended in H2O 

(λex = 355 nm). 
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Fig. S8 Overlaid emission spectra of PTMA-Ir and PTMA suspended in H2O (0.2 

mg polymer in 3 mL H2O) (λex = 350 nm). 
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Fig. S9 Extracted-ion chromatograms (XIC) of derivatized TMA and TEA 

monitored at their specific multiple reaction monitoring (MRM) transitions 
in the study of PTMA-Ir. (a), (b) and (c) are spiked sample replicates, and 
(d) is the negative control.  
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Fig. S10 Extracted-ion chromatograms (XIC) of derivatized TMA and TEA 
monitored at their specific MRM transitions in the study of P-Ir. (a), (b) 
and (c) are spiked sample replicates, and (d) is the negative control. 
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Fig. S11 Emission spectra of PTMA-Ir suspended in an acidic aqueous solution (pH 
= 2) after incubation in different concentrations of TMA·HCl for 120 min 
(λex = 350 nm). 
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Fig. S12 Emission spectra of Ir-2 in CH3CN/H2O (3:2 v/v) after incubation with 
different concentrations of TMA·HCl (λex = 350 nm). 
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Fig. S13 Emission spectra of T-Ir upon exposure to different concentrations of TMA 

vapor under an air atmosphere (λex = 350 nm). 
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Fig. S14 Time-dependent emission spectra of PTMA-Ir under an argon atmosphere 
upon exposure to 634 ppm TMA vapor (λex = 350 nm). 
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Fig. S15 Emission responses of T-Ir under an air atmosphere upon exposure to 1800 
ppm of TMA vapor and removal from TMA vapor over five cycles. 
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Fig. S16 Emission quenching of T-Ir under an argon atmosphere upon exposure to 
3950 ppm vapor of TMA and saturated vapor of other interfering reagents 
at 20 °C [TEA (~75,000 ppm), DIPEA (~14,100 ppm), acetic acid (~14,800 
ppm), DMF (~3,800 ppm), THF (~188,000 ppm) and MeCN (~108,600 
ppm)]. 
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Fig. S17 Emission quenching of T-Ir under an air atmosphere upon exposure to 1800 

ppm vapor of TMA and other interfering reagents. 
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Fig. S18 Emission spectra of Ir-2 loaded on a filter paper upon exposure to different 
concentrations of TMA vapor under an argon atmosphere (λex = 300 nm). 
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Fig. S19 Emission spectra of Ir-2 loaded on a filter paper upon exposure to different 

concentrations of TMA vapor under an air atmophere (λex = 300 nm). 
 

 

Fig. S20 1H NMR spectra of (a) [Ir-1] in (CD3)2CO and (b) [Ir-2] in CDCl3. 
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Fig. S21 Positive ESI mass spectrum of [Ir-1]. The inset shows the expanded ion 

cluster at m/z = 713.2. 
 

 
Fig. S22 Positive ESI mass spectrum of [Ir-2]. The inset shows the expanded ion 

cluster at m/z = 741.2. 
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Table S1. Comparison of PTMA-Ir sensor with recently reported TMA sensors. 

Sensing Material 
Sensing 

Temp. (°C) 

Tested 
Range 
(ppm) 

LOD  
Response 

Time 
Ref. 

MoO3 300 0.1 – 1000 0.01 ppm 8 s [3] 
Ru-SnO2 400 1 – 5 1 ppm / [4] 

Graphene quantum 
dots / α-Fe2O3 

270 0.01 – 1000 0.01 ppm 11 s [5] 

rGO / In2O3 RT 100 – 1500 100 ppm 2 s [6] 
α-Fe2O3 250 1 – 100 1 ppm < 1 min [7] 

Au / PdO / WO2.72 240 1 – 100 1 ppm 4 s [8] 
Co3O4 / ZnO 250 0.33 – 66 130 ppb 3 s [9] 

Au / WO3 300 0.5 – 25 0.5 ppm 8 s [10] 

PTMA-Ir 25 
0 – 1179 
0 – 1276 

9 ppm 
15 ppm 

5 s 
This 
work
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