Supporting Information

Mixed solvents assisted synthesis of high mass loading amorphous NiCo-MOF as

promising electrode material for supercapacitors

Faxue Lu^{a,1}, Junnan Yao^{a,1}, Yajun Ji*^a, Dong Shi^a, Pengcheng Zhang^a, Shixiong Zhang^a

^a School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 3 34#, 200093 Shanghai, China.

* Corresponding author: E-mail: jiyajun@usst.edu.cn Fax: +86 21 65667144; Tel: +86 21 65667144

¹ These authors contributed equally to this work.

Fig. S1. TEM images of NiCo-MOF-2.

Fig. S2. The particle distribution plots of (a) NiCo-MOF-1, (b) NiCo-MOF-2 and (c) NiCo-MOF-3.

Fig. S3. Schematic illustration of the synthesis of NiCo-MOF-1, NiCo-MOF-2 and NiCo-MO F-3 and their representative morphologies.

Fig. S4. The Raman spectroscopy of NiCo-MOF-2.

Fig. S5. (a-b) The CV curves and (c-d) GCD curves of NiCo-MOF-1 and NiCo-MOF-3.

Fig. S6. The equivalent circuit model fitting Nyquist diagram.

Fig. S7. CV curves of NiCo-MOF-1, NiCo-MOF-2 and NiCo-MOF-3 at different sweep speeds in the potential range of 0.14 V to 0.24 V.

Fig. S8. EIS curves of NiCo-MOF-1, NiCo-MOF-2 and NiCo-MOF-3 before and after the stability test.

Fig. S9. (a-c) CV curves with the scan rate range from 1 mV s⁻¹ to 5 mV s⁻¹ in the potential range of -0.2-0.8 V; (d-f) Contribution ratio of capacitive and diffusion-controlled charge storage processes of NiCo-MOF-1, NiCo-MOF-2 and NiCo-MOF-3 and (g-i) the capacitive contribution and diffusive contribution of the NiCo-MOF-1, NiCo-MOF-2 and NiCo-MOF-3 at the scan rate of 5 mV s⁻¹.

Table S1. Comparison of the internal resistance (Rs) value and charge-transfer resistance (Rct) value of NiCo-MOF-1, NiCo-MOF-2 and NiCo-MOF-3.

Sample	Rs (Ω)	Rct (Ω)
NiCo-MOF-1	0.8	4.9
NiCo-MOF-2	0.6	2.9
NiCo-MOF-3	0.7	3.2

Table S2. Comparison of electrochemical performance of NiCo-MOF-2 with other works.

Electrode materials	Electr olyte	Areal specific capacitance	Specific capacitance	Rate capability	Capability retention	Ratio o f diffus ion-con trol	Refs.
NiCo-MOFs/	2 M	4.31 F cm ⁻² at	26.20/		36 66%	1	
rGO	KOH	1 mA cm^{-2}		50.270		30.0070	_
Co-MOE/NE	1 M L	1.54 F cm ⁻² a			71% (100		2
	iOH	t 1 mA cm ⁻²			0 cycles)		
Ni/Co-MOF	2 M		758 F g ⁻¹ at		75% (500		3
	KOH		1 A g ⁻¹		0 cycles)		_
Ni-MOF/NC	3 M		828 F g ⁻¹ at	44.68%		95.6%	4
	KOH		1 A g ⁻¹				
Ni@Cu-MO	6 M 526 F g^{-1} at	57 7%	80% (120		5		
F	KOH		1 A g ⁻¹	52.270	0 cycles)		
NiCo MOF	3 M		927.1 F g ⁻¹ at	69.7%			6
	KOH		1 A g ⁻¹				
CoNi _{0.5} -MOF	2 M		663.6 F g ⁻¹ at			70%	7
	KOH		1 A g ⁻¹				,
NiCo-MOF	2 M		916.1 F g ⁻¹ at	76.6%			8
	KOH		1 A g ⁻¹				0
NiCo-MOF-2	1 M	9.7 F cm ⁻² at	941.75 F g ⁻¹ 71.10/	82.83% (4	07.8	This	
	KOH	5 mA cm ⁻²	at 0.49 A g ⁻¹	/1.1%0	000cycles)	97.8	work

Table S3. Comparison of the Rs and Rct value of NiCo-MOF-1//AC, NiCo-MOF-2//AC and

NiCo-MOF-3//AC.

Sample	Rs (Ω)	Rct (Ω)
NiCo-MOF-1//AC	3.0	3.8
NiCo-MOF-2//AC	1.3	2.1
NiCo-MOF-3//AC	3.2	1.2

Reference

1. C. Shi, H. Cao, S. Li, L. Guo, Y. Wang and J. Yang, *Journal of Energy Storage*, 2022, **54**, 105270.

2. Y. Yu, Y. Han, J. Cui and C. Wang, New J. Chem., 2022, 46, 12565-12571.

3. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren and Y. He, *J Colloid Interface Sci*, 2018, **531**, 83-90.

4. R. Liang, Y. Du, J. Lin, J. Chen and P. Xiao, *Energy & Fuels*, 2022, **36**, 7115 -7120.

5. Y. Wang, S. Nie, Y. Liu, W. Yan, S. Lin, G. Cheng, H. Yang and J. Luo, *Pol ymers (Basel)*, 2019, **11**.

6. Y. Du, R. Liang, J. Wu, Y. Ye, S. Chen, J. Yuan, J. Chen and P. Xiao, *RSC Adv*, 2022, **12**, 5910-5918.

7. W. Zhang, X. Guo, Y. Wang, Y. Zheng, J. Zhao, H. Xie, Z. Zhang and Y. Zhao, *Energy & Fuels*, 2022, **36**, 1716-1725.

8. Y. Liu, Y. Wang, H. Wang, P. Zhao, H. Hou and L. Guo, *Appl. Surf. Sci.*, 2019, **492**, 455-463.