Betaine mediated enhancement of thermal stability and acidity tolerance of vanadium(V) solutions

Luca Guglielmero ^{*a,b}, Andrea Mezzetta ^b, Felicia D'Andrea ^b, Lorenzo Guazzelli ^b, Christian Silvio Pomelli ^{*b}.

^a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy;

^b Department of Pharmacy, University of Pisa, Via Bonanno 33, Pisa 56126, Italy.

* email: <u>luca.guglielmero@sns.it</u>

* email: <u>christian.pomelli@unipi.it</u>

Supporting Information

Table of Contents

ATR-FTIR spectra of $[VO(Bet)_2]^{2+}$ compounds and precursors	pages S2-S5
Elemental analyses of $[VO(Bet)_2]^{2+}$ compounds	page S6
TGA profiles of $[VO(Bet)_2]^{2+}$ compounds and precursors	pages S7-S10
DSC thermograms of $[VO(Bet)_2]^{2+}$ compounds	pages S11-S12
⁵¹ V-NMR spectra of V(V) solutions	pages S13-S15
ESI-MS of V(V) solutions at different pH values	pages S16-S18

Figure S1. ATR-FTIR spectrum of betaine.

Figure S2. ATR-FTIR spectrum of VO(acac)₂.

Figure S3. ATR-FTIR spectrum of hydrated VO(SO)₄.

Figure S4. ATR-FTIR spectrum of VO(Bet)₂SO₄ prepared according to method A.

Figure S5. ATR-FTIR spectrum of VO(Bet)₂SO₄ prepared according to method B.

Figure S6. ATR-FTIR spectrum of VO(Bet)₂(Cl)₂ prepared according to method A.

Figure S7. ATR-FTIR spectrum of VO(Bet)₂(TFA)₂ prepared according to method A.

Figure S8. ATR-FTIR spectrum of VO(Bet)₂(MsO)₂ prepared according to method A.

Compound		C (%)	H (%)	N (%)	S (%)
[VO(Bet) ₂]SO ₄ method A	Test1	25.76	6.933	5.79	6.299
	Test2	25.66	6.607	6.95	6.425
	Mean Value	25.71	6.770	5.87	6.362
	Deviation (abs.)	0.07	0.231	0.11	0.090
[VO(Bet) ₂]SO ₄ method B	Test1	25.98	6.483	5.84	6.562
	Test2	25.67	6.601	5.97	6.606
	Mean Value	25.83	6.542	5.91	6.584
	Deviation (abs.)	0.21	0.084	0.09	0.031
$[VO(Bet)_2](CI)_2$	Test1	27.79	6.870	6.35	
	Test2	27.82	6.877	6.34	
	Mean Value	27.81	6.873	6.35	
	Deviation (abs.)	0.02	0.005	0.01	
[VO(Bet) ₂](TFA) ₂	Test1	30.28	5.325	5.00	
	Test2	30.24	5.021	5.04	
	Mean Value	30.26	5.173	5.02	
	Deviation (abs.)	0.03	0.215	0.03	
[VO(Bet) ₂](MsO) ₂	Test1	27.79	6.751	5.26	11.894
	Test2	27.32	6.619	5.12	11.762
	Mean Value	27.55	6.685	5.19	11.828
	Deviation (abs.)	0.32	0.094	0.10	0.093

Table S1. Elemental analyses results of [VO(Bet)₂]²⁺ compounds.

Figure S9. Thermal gravimetric analysis and derivative of betaine.

Figure S10. Thermal gravimetric analysis and derivative of VO(acac)₂.

Figure S11. Thermal gravimetric analysis and derivative of VO(Bet)₂SO₄ prepared according to method A.

Figure S12. Thermal gravimetric analysis and derivative of VO(Bet)₂SO₄ prepared according to method B.

Figure S13. Thermal gravimetric analysis and derivative of VO(Bet)₂(Cl)₂.

Figure S14. Thermal gravimetric analysis and derivative of VO(Bet)₂(TFA)₂.

Figure S15. Thermal gravimetric analysis and derivative of VO(Bet)₂(MsO)₂.

Figure S16. DSC analysis of VO(Bet)₂SO₄.

Figure S17. DSC analysis of VO(Bet)₂(Cl)₂.

Figure S18. DSC analysis of VO(Bet)₂(TFA)₂.

Figure S19. DSC analysis of VO(Bet)₂(MsO)₂.

Figure S20. ⁵¹V-NMR spectra of electrochemically oxidized aqueous solutions of VO(Bet)₂SO₄, betaine and ammonium chloride (1:3:5) at pH = 2.

Figure S21. ⁵¹V-NMR spectra of electrochemically oxidized aqueous solutions of VO(Bet)₂SO₄, betaine and ammonium chloride (1:3:5) at pH = 3.

Figure S22. ⁵¹V-NMR spectra of electrochemically oxidized aqueous solutions of VO(Bet)₂SO₄, betaine and ammonium chloride (1:3:5) at pH = 4.

Figure S23. ⁵¹V-NMR spectra of electrochemically oxidized aqueous solutions of VO(Bet)₂SO₄, betaine and ammonium chloride (1:3:5) at pH = 5.

Figure S24. ⁵¹V-NMR spectra of electrochemically oxidized aqueous solutions of VO(Bet)₂SO₄, betaine and ammonium chloride (1:3:5) at pH = 6.

Figure S25. ESI-MS (-) spectrum of electrochemically oxidized aqueous solutions of $VO(Bet)_2SO_4$, betaine and ammonium chloride (1:3:5) at pH = 2.

Figure S26. ESI-MS (+) spectrum of electrochemically oxidized aqueous solutions of VO(Bet)₂SO₄, betaine and ammonium chloride (1:3:5) at pH = 2.

Figure S27. ESI-MS (-) spectrum of electrochemically oxidized aqueous solutions of $VO(Bet)_2SO_4$, betaine and ammonium chloride (1:3:5) at pH = 4.

Figure S28. ESI-MS (+) spectrum of electrochemically oxidized aqueous solutions of $VO(Bet)_2SO_4$, betaine and ammonium chloride (1:3:5) at pH = 4

Figure S29. ESI-MS (-) spectrum of electrochemically oxidized aqueous solutions of $VO(Bet)_2SO_4$, betaine and ammonium chloride (1:3:5) at pH = 6.

Figure S30. ESI-MS (+) spectrum of electrochemically oxidized aqueous solutions of $VO(Bet)_2SO_4$, betaine and ammonium chloride (1:3:5) at pH = 6.