ESI for:

N-Coordinated Tellurenium(II) and Telluronium(IV) cations: Synthesis, Structure and Hydrolysis.

Martin Hejda, Lukáš Doležal, Jan Blahut, Emanuel Hupf, Jiří Tydlitát, Roman Jambor, Aleš Růžička, Jens Beckmann* and Libor Dostál*

*E-mails: libor.dostal@upce.cz (L.D.), j.beckmann@uni-bremen.de (J.B.)

Table of contents:

1) Solution NMR spectra of studied compounds	S2-S49
2) Solid state NMR spectra of studied compounds	S50
3) Crystallographic data for studied compounds	S51-S54
4) Theoretical study	S55-S61
5) Mass spectra of studied compounds	S62-S62

1) Solution NMR spectra of studied compounds.

Figure S1: ¹H NMR spectrum of CN^{Dipp}TeCl in CDCl₃ (500 MHz).

Figure S2: ${}^{13}C{}^{1}H$ -APT NMR spectrum of $CN^{Dipp}TeCl$ in CDCl₃ (125.6 MHz).

Figure S3: 125 Te $\{^{1}$ H $\}$ NMR spectrum of CN^{Dipp}TeCl in CDCl₃ (158.0 MHz).

Figure S4: ¹⁵N,¹H HMBC NMR spectrum of CN^{Dipp}TeCl in CDCl₃.

Figure S5: ¹H NMR spectrum of [CN^{Dipp}Te]SbF₆ in CD₂Cl₂ (500 MHz).

Figure S6: ${}^{13}C{}^{1}H$ -APT NMR spectrum of [CN^{Dipp}Te]SbF₆ in CD₂Cl₂ (125.6 MHz).

Figure S7: 125 Te $\{^{1}$ H $\}$ NMR spectrum of [CN^{Dipp}Te]SbF₆ in CD₂Cl₂ (158.0 MHz).

Figure S8: ¹⁵N,¹H HMBC NMR spectrum of [CN^{Dipp}Te]SbF₆ in CD₂Cl₂.

Figure S9: ¹H NMR spectrum of [NCN^{*t*Bu}Te]Br in CD₂Cl₂ (500 MHz).

Figure S10: ${}^{13}C{}^{1}H$ -APT NMR spectrum of [NCN^{*t*Bu}Te]Br in CD₂Cl₂ (125.6 MHz).

Figure S11: 125 Te{ 1 H} NMR spectrum of [NCN^{*t*Bu}Te]Br in CD₂Cl₂ (158.0 MHz).

Figure S12: ¹⁵N,¹H HMBC NMR spectrum of [NCN^{*t*Bu}Te]Br in CDCl₃.

Figure S13: ¹H NMR spectrum of [NCN^{*t*Bu}Te]OTf in CD₂Cl₂ (500 MHz).

Figure S14: ${}^{13}C{}^{1}H$ NMR spectrum of [NCN^{*t*Bu}Te]OTf in CD₂Cl₂ (125.6 MHz).

Figure S15: ¹²⁵Te $\{^{1}H\}$ NMR spectrum of [NCN^{*t*Bu}Te]OTf in CD₂Cl₂ (158.0 MHz).

Figure S16: ¹⁵N,¹H HMBC NMR spectrum of [NCN^{rBu}Te]OTf in CD₂Cl₂.

Figure S17: ${}^{19}F{}^{1}H$ NMR spectrum of [NCN^{*t*Bu}Te]OTf in CD₂Cl₂ (376.5 MHz).

Figure S18: ¹H NMR spectrum of [NCN^{*t*Bu}Te]SbF6 in CD₂Cl₂ (500 MHz). *denotes traces of silicon grease

Figure S19: ¹³C{¹H}-APT NMR spectrum of [NCN^{tBu}Te]SbF₆ in CD₂Cl₂ (125.6 MHz).

Figure S20: ¹²⁵Te $\{^{1}H\}$ NMR spectrum of [NCN^{*t*Bu}Te]SbF₆ in CD₂Cl₂ (158.0 MHz).

Figure S21: ¹⁵N, ¹H HMBC NMR spectrum of [NCN^{*t*Bu}Te]SbF6 in CD₂Cl₂.

Figure S22: ¹H NMR spectrum of [NCN^{Dipp}Te]Br in CDCl₃ (500 MHz). *denotes traces of silicon grease

Figure S23: ¹³C{¹H}-APT NMR spectrum of [NCN^{Dipp}Te]Br in CDCl₃ (125.6 MHz).

Figure S24: ¹²⁵Te{¹H} NMR spectrum of [NCN^{Dipp}Te]Br in CDCl₃ (158.0 MHz).

Figure S25: ¹⁵N, ¹H HMBC NMR spectrum of [NCN^{Dipp}Te]Br in CDCl₃.

Figure S26: ¹H NMR spectrum of [NCN^{Dipp}Te]SbF₆ in CD₂Cl₂ (500 MHz). *denotes traces of silicon grease

Figure S27: ${}^{13}C{}^{1}H$ -APT NMR spectrum of [NCN^{Dipp}Te]SbF₆ in CD₂Cl₂ (125.6 MHz).

Figure S28: 125 Te{ 1 H} NMR spectrum of [NCN^{Dipp}Te]SbF₆ in CD₂Cl₂ (158.0 MHz).

Figure S29: ¹⁵N,¹H HMBC NMR spectrum of [NCN^{Dipp}Te]SbF₆ in CD₂Cl₂.

Figure S30: ¹H NMR spectrum of **[CN^{***t***Bu}TeCl₂]OTf** in CD₃CN (500 MHz). *denotes traces of dichloromethane used in the synthesis, [#] traces of hexane used for washing of crystals before analysis

Figure S31: ¹³C{¹H} NMR spectrum of [CN^{*t*Bu}TeCl₂]OTf in CD₃CN (125.6 MHz). *denotes traces of hexane.

Figure S32: ¹²⁵Te{¹H} NMR spectrum of [CN^{*t*Bu}TeCl₂]OTf in CD₃CN (158.0 MHz).

Figure S33: ¹⁵N,¹H HMBC NMR spectrum of [CN^{*t*Bu}TeCl₂]OTf in CD₃CN.

Figure S34: ${}^{19}F{}^{1}H$ NMR spectrum of [CN^{*t*Bu}TeCl₂]OTf in CD₃CN (376.5 MHz).

Figure S35: ¹H NMR spectrum of [CN^{/Bu}TeCl₂]SbF₆ in CD₃CN (500 MHz).

Figure S36: ¹³C{¹H}-APT NMR spectrum of [**CN**^{*t***Bu**}**TeCl**₂]**SbF**₆ in CD₃CN (125.6 MHz).

Figure S37: ¹²⁵Te{¹H} NMR spectrum of [CN^{*t*Bu}TeCl₂]SbF₆ in CD₃CN (158.0 MHz).

Figure S38: ¹⁵N,¹H HMBC NMR spectrum of [CN^{*t*Bu}TeCl₂]SbF₆ in CD₃CN.

Figure S35: ¹H NMR spectrum of *in situ* prepared sample of **[CN^{Dipp}TeCl₂]SbF**₆ in CD₂Cl₂ (500 MHz). *unknown minor impurity

Figure S36: ¹³C{¹H}-APT NMR spectrum of *in situ* prepared sample of **[CN^{Dipp}TeCl2]SbF**6 in CD₂Cl₂ (125.6 MHz). *denotes unknown minor impurities

Figure S37: ¹²⁵Te{¹H} NMR spectrum of *in situ* prepared sample of $[CN^{Dipp}TeCl_2]SbF_6$ in CD_2Cl_2 (158.0 MHz).

Figure S38: ¹⁵N,¹H HMBC NMR spectrum of *in situ* prepared sample of **[CN^{Dipp}TeCl2]SbF**⁶ in CD₂Cl₂. *denotes minor unknown impurity most probably result of starting hydrolysis as the signal corresponds to an NH group.

Figure S39: ¹H NMR spectrum of [NCN^{*t*Bu}TeCl₂]OTf in CD₃CN (400 MHz).

Figure S40: ¹³C{¹H}-APT NMR spectrum of [NCN^{*t*Bu}TeCl₂]OTf in CD₃CN (125.6 MHz).

Figure S41: ¹²⁵Te{¹H} NMR spectrum of [NCN^{*t*Bu}TeCl₂]OTf in CD₃CN (158.0 MHz).

Figure S42: ¹⁵N,¹H HMBC NMR spectrum of [NCN^{*t*Bu}TeCl₂]OTf in CD₃CN.

Figure S43: ${}^{19}F{}^{1}H$ NMR spectrum of [CN^{*t*Bu}TeCl₂]OTf in CD₃CN (376.5 MHz).

Figure S44: ¹H NMR spectrum of **[NCN^{***t***Bu}TeCl₂]SbF₆ in CD₃CN (400 MHz). *denotes traces of dichloromethane.**

Figure S45: ¹³C{¹H} NMR spectrum of [NCN^{*t*Bu}TeCl₂]SbF₆ in CD₃CN (125.6 MHz). *denotes traces of dichloromethane.

Figure S46: ¹²⁵Te $\{^{1}H\}$ NMR spectrum of [NCN^{tBu}TeCl₂]SbF₆ in CD₃CN (158.0 MHz).

Figure S47: ¹⁵N, ¹H HMBC NMR spectrum of [NCN^{tBu}TeCl₂]SbF₆ in CD₃CN.

Figure S48: ¹H NMR spectrum of *in situ* prepared sample of **[NCN^{Dipp}TeCl₂]SbF**₆ in CD₂Cl₂ (500 MHz). *denotes minor unknown impurities

Figure S49: ¹³C{¹H}-APT NMR spectrum of *in situ* prepared sample of [NCN^{Dipp}TeCl₂]SbF₆ in CD₂Cl₂ (125.6 MHz). *denotes minor unknown impurities

Figure S50: ¹²⁵Te{¹H} NMR spectrum of *in situ* prepared sample of [NCN^{Dipp}TeCl₂]SbF₆ in CD_2Cl_2 (158.0 MHz).

Figure S51: ¹⁵N,¹H HMBC NMR spectrum of *in situ* prepared sample of **[NCN^{Dipp}TeCl₂]SbF**₆ in CD₂Cl₂.

Figure S52: ¹H NMR spectrum of single-crystals of **[COTeCl2]2O** in thf-d8 (not dried) (500 MHz). *denotes traces of acetonitrile.

Figure S53: ¹³C{¹H} NMR of single-crystals of [COTeCl₂]₂O in thf-d8 (not dried) (125.6 MHz).

Figure S54: ¹²⁵Te{¹H} NMR spectrum of single-crystals of [**COTeCl**₂]₂**O** in thf-d8 (not dried) (158 MHz).

Figure S55: ¹H, ¹H EXSY NMR spectrum (mixing time 1s) of single-crystals of [**COTeCl**₂]₂**O** in thf-d8 (not dried) showing mutual exchange between [**COTeCl**₂]₂**O** and [**COTeCl**₂]**OH** and traces amount of water (500 MHz).

Figure S56: ¹H NMR spectrum obtained after dissolving of single-crystals of **[COTeCl_2]_2O** in thf-d8 and addition of 10 μ L of water showing the presence of **[COTeCl_2]OH** only (500 MHz). *denotes traces of acetonitrile and # signal of water added. Note: the signal of Te-OH disappeared probably due to the fast exchange with water.

Figure S57: ¹³C{¹H} NMR spectrum obtained after dissolving of single-crystals of [COTeCl₂]₂O in thf-d8 and addition of 10 μ L of water showing the presence of [COTeCl₂]OH only (125.6 MHz).

Figure S58: ¹²⁵Te{¹H} NMR spectrum obtained after dissolving of single-crystals of [COTeCl₂]₂O in thf-d8 and addition of 10 μ L of water showing the presence of [COTeCl₂]OH only (158 MHz).

Figure S59: ¹H NMR spectrum of single-crystals of **[COTeCl₂]₂O** in thf-d8 (dried) (500 MHz). The signals of traces of **[COTeCl₂]OH** are still present ([#]). *denotes traces of acetonitrile.

Figure S60: ¹³C{¹H} NMR spectrum of single-crystals of [**COTeCl2]**₂**O** in thf-d8 (dried) (125.6 MHz).

Figure S61: ¹²⁵Te{¹H} NMR spectrum of single-crystals of [**COTeCl2**]2**O** in thf-d8 (dried) (158 MHz). The signal of traces of [**COTeCl2**]**OH** is still present ([#]).

Figure S62: Comparison of ${}^{13}C{}^{1}H$ NMR spectra of [COTeCl₂]₂O in thf-d8 (dried, top) *vs*. mixture of [COTeCl₂]₂O and [COTeCl₂]OH in thf-d8 (wet, middle) *vs*. [COTeCl₂]OH in thf-d8 (wet+H₂O, bottom) (125.6 MHz).

Figure S63: Comparison of ¹²⁵Te{¹H} NMR spectra of **[COTeCl₂]₂O** in thf-d8 (dried, top) vs. mixture of **[COTeCl₂]₂O** and **[COTeCl₂]OH** in thf-d8 (wet, middle) vs **[COTeCl₂]OH** in thf-d8 (wet+H₂O, bottom) (125.6 MHz).

Figure S64: ¹H NMR spectrum of single-crystals of **[OCN^{***t***Bu}TeCl₂]₂O** in dmso-d6 (dried) (500 MHz).

Figure S65: ¹³C{¹H} NMR spectra of [OCN^{*t*Bu}TeCl₂]₂O in dmso-d6 (dried) (125.6 MHz).

Figure S66: ¹²⁵Te{¹H} NMR spectra of [OCN^{*t*Bu}TeCl₂]₂O in dmso-d6 (dried) (125.6 MHz).

Figure S67: Comparison of ¹¹H NMR spectra of [OCNTeCl₂]₂O in (dried, top) *vs.* mixtures of [OCNTeCl₂]₂O and [OCNTeCl₂]OH formed in time in wet dmso-d6 (125.6 MHz).

Figure S68: Comparison of ¹²⁵Te{¹H} NMR spectra showing transformation of **[OCNTeCl2]20** to **[OCNTeCl2]OH** formed in time in wet dmso-d6 (125.6 MHz).

Figure S69: ¹H NMR spectrum of single-crystals of **[OCN**^{*t***Bu**}**TeCl**₂**]OH** in dmso-d6 (wet, 8 days) contaminated by traces of **[OCN**^{*t***Bu**}**TeCl**₂**]**₂**O** ([#]) (500 MHz). (*) traces of acetonitrile used in synthesis

Figure S70: ¹³C{¹H} NMR spectra of $[OCN^{tBu}TeCl_2]OH$ in dmso-d6 (wet, 8 days) contaminated by traces of $[OCN^{tBu}TeCl_2]_2O$ (125.6 MHz).

Figure S71: ¹²⁵Te{¹H} NMR spectra of [OCN^{*t*Bu}TeCl₂]OH in dmso-d6 (wet, 8 days) contaminated by traces of [OCN^{*t*Bu}TeCl₂]₂O ([#]) (125.6 MHz).

Figure S72: Comparison of ${}^{13}C{}^{1}H$ NMR spectra of [OCNTeCl₂]₂O in dmso-d6 (dried, top) and [OCNTeCl₂]OH in dmso-d6 (wet, after 8 days) (125.6 MHz).

Figure S73: ¹H, ¹H EXSY NMR spectrum (mixing time 1s) of mixture of [OCNTeCl₂]₂O and [OCNTeCl₂]OH (wet dmso-d6, 18h) and traces amount of water (500 MHz).

Figure S74: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with CN^{*t*Bu}TeCl in dichloromethane-d₂.

Figure S75: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with $CN^{Dipp}TeCl$ in dichloromethane-d₂.

Figure S76: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [CN^{*t*Bu}Te]OTf in dichloromethane-d₂.

Figure S77: ³¹P NMR spectra of Et_3PO (top) and its 1:5 molar mixture with [CN^{*t*Bu}Te]SbF₆ in dichloromethane-d₂.

Figure S78: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [CN^{Dipp}Te]SbF₆ in dichloromethane-d₂.

Figure S79: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [CN^{Dipp}Te]SbF₆ in dichloromethane-d₂.

Figure S80: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{*t*Bu}Te]Br in dichloromethane-d₂.

Figure S81: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{*t*Bu}Te]OTf in dichloromethane-d₂.

Figure S82: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{*t*Bu}Te]SbF6 in dichloromethane-d₂.

Figure S83: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{Dipp}Te]Br in dichloromethane-d₂.

Figure S84: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{Dipp}Te]SbF₆ in dichloromethane-d₂.

Figure S85: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [CN^{*t*Bu}TeCl₂]OTf in dichloromethane-d₂.

Figure S86: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [CN^{*t*Bu}TeCl₂]SbF₆ in dichloromethane-d₂.

Figure S87: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{tBu}TeCl₂]OTf in acetonitrile-d₃.

Figure S88: ³¹P NMR spectra of Et₃PO (top) and its 1:5 molar mixture with [NCN^{tBu}TeCl₂]SbF₆ in acetonitrile-d₃.

Figure S89: ¹H NMR spectrum of mother liquor after isolation of $[NCN^{rBu}Te]Br$ showing the presence of nBu(dtc) (*).

Figure S90: ¹H-¹³C HMBC NMR spectrum of the mother liquor after isolation of $[NCN^{rBu}Te]Br$ showing the presence coupling of all CH₂ groups form both dtc and *n*Bu with the *C*S₂ carbon.

 $[NCN^{tBu}Te]Br$ (red) and $[NCN^{Dipp}Te]Br$ (blue) showing the presence nBu(dtc) in both cases.

2) Solid state NMR spectra of studied compounds.

Figure S92: Solid-state MAS NMR ¹²⁵Te spectra (189.4 MHz, ambient temperature) of entitled complexes acquired at 18kHz MAS rate (red) compared with spectra at 17kHz MAS (16 kHz for [NCN^{*t*Bu}Te]SbF₆) for identification of isotropic chemical shift (indicated in figure)

3) Crystallographic data for studied compounds.

	CN^{Dipp}TeCl	[NCN ^{tBu} Te]Br	[CN ^{Dipp} Te]SbF6
Formula	C ₁₉ H ₂₂ ClNTe	C ₁₆ H ₂₃ N ₂ TeBr CH ₂ Cl ₂	C ₁₉ H ₂₂ NTeF ₆ Sb
Formula weight, g mol ⁻¹	427.43	535.80	627.72
Crystal system	Monoclinic	Monoclinic	Monoclinic
Crystal size, mm	$0.57 \times 0.18 \times 0.17$	$0.51 \times 0.27 \times 0.20$	$0.58 \times 0.57 \times 0.33$
Space group	$P-2_1/c$	$P-2_1/n$	$P-2_1/n$
<i>a</i> , Å	9.4820(6)	11.2776(7)	15.2837(8)
b, Å	14.8539(12)	15.3893(11)	8.7618(4)
<i>c</i> , Å	26.6321(19)	12.0866(9)	16.0540(8)
<i>α</i> , °	90	90	90
<i>β</i> , °	94.310(6)	92.117(2)	94.823(2)
γ, °	90	90	90
<i>V</i> , Å ³	3740.4(5)	1151.69(16)	2142.22(18)
Ζ	8	4	4
$ ho_{ m calcd},{ m Mg}\;{ m m}^{-3}$	1.518	1.698	1.946
μ (Mo K α), mm ⁻¹	1.730	3.581	2.678
<i>F</i> (000)	1696	1048	1200
θ range, deg	1 to 27.5	1 to 26.5	1 to 30.0
No. of reflns collected	29757	53971	54653
No. indep. Reflns	8488	4338	6799
No. obsd reflns with $(I > 2\sigma(I))$, R_{int}	5881, 0.069	3678, 0.028	6487, 0.024
No. refined params	397	214	258
GooF (F^2)	1.183	1.075	1.174
$R_1(F)(I > 2\sigma(I))$	0.049	0.035	0.024
$wR_2(F^2)$ (all data)	0.072	0.095	0.052
Largest diff peak/hole, e Å $^{-3}$	0.689 / -0.790	0.786 / -1.691	0.857 / -0.974
CCDC	2254919	2254924	2254925
$R_{\rm int} = \sum \left F_{\rm o}^2 - F_{\rm o,mean}^2 \right / \sum F_{\rm o}^2,$	$\mathbf{S} = \left[\sum (w(F_o^2 - F_c^2)\right]$	$^{2})/(N_{\rm diffrs} - N_{\rm params})]^{1/2}$	$\frac{1}{2}$ for all data, $R(F) =$

Table SI. Crystal data and structure refinement of studied compounds
--

 $\sum ||F_o| - |F_c||/\sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2)/(\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data.}$

	[NCN ^{tBu} Te]SbF6	[NCN ^{Dipp} Te]SbF6	CN ^{tBu} TeCl ₂ OTf
Formula	$C_{16}H_{23}N_2TeF_6Sb \\$	$C_{32}H_{39}N_2TeF_6Sb$	$C_{12}H_{14}Cl_2F_3NO_3STe$
		CH ₂ Cl ₂	
Formula weight, g mol ⁻¹	606.71	899.93	507.80
Crystal system	Monoclinic	Monoclinic	Triclinic
Crystal size, mm	$0.59 \times 0.28 \times 0.15$	$0.59 \times 0.42 \times 0.38$	$0.59 \times 0.38 \times 0.22$
Space group	$P-2_1/c$	$P-2_1/c$	P-1
<i>a</i> , Å	12.2981(13)	13.0781(6)	8.7695(6)
<i>b</i> , Å	9.0873(9)	16.2906(8)	10.5500(8)
<i>c</i> , Å	18.2137(17)	34.6077(17)	10.9648(8)
α, °	90	90	114.602(3)
<i>β</i> , °	97.656(4)	92.357(2)	96.732(3)
γ, °	90	90	106.032(3)
V, Å ³	2017.4(4)	7366.9(6)	854.61(11)
Ζ	4	8	2
$ ho_{ m calcd},{ m Mg}~{ m m}^{-3}$	1.998	1.623	1.973
μ (Mo K α), mm ⁻¹	2.841	1.725	2.215
<i>F</i> (000)	1160	3552	492
θ range, deg	1 to 27.5	1 to 30	1 to 27.5
No. of reflns collected	58182	220696	25095
No. indep. Reflns	4653	22937	3954
No. obsd reflns with $(I \ge 2\sigma(I)), R_{int}$	4355, 0.026	18589, 0.035	3629, 0.026
No. refined params	241	837	211
GooF (F^2)	1.338	1.081	1.071
$R_1(F)(I > 2\sigma(I))$	0.030	0.037	0.022
$wR_2(F^2)$ (all data)	0.069	0.071	0.052
Largest diff peak/hole, e Å ⁻³	0.668 / -1.052	0.806 / -1.401	0.582 / -1.305
CCDC	2254923	2254927	2254918

Table S1 (continuation).

Crystal data and structure refinement of studied compounds.

 $\overline{R_{\text{int}} = \sum |F_o^2 - F_{\text{o},\text{mean}}| / \sum F_o^2}, \ S = [\sum (w(F_o^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}} \text{ for all data, } R(F) = \sum |F_o| - |F_c| |/ \sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data.}$

	[NCN ^{tBu} TeCl ₂]OTf	[NCN ^{tBu} TeCl ₂]SbF ₆	[COTeCl ₂] ₂ O
Formula	$C_{16}H_{23}Cl_2N_2TeCF_3O_3S$	$C_{!6}H_{23}Cl_2N_2TeF_6Sb$	$C_{14}H_{10}Cl_4O_3Te_2$
Formula weight, g mol ⁻¹	590.93	677.61	623.22
Crystal system	Monoclinic	Monoclinic	Triclinic
Crystal size, mm	$0.43 \times 0.32 \times 0.08$	$0.51 \times 0.30 \times 0.17$	$0.16 \times 0.15 \times 0.14$
Space group	$P-2_1/c$	$P-2_1/n$	P-1
<i>a</i> , Å	12.2012(8)	12.6772(8)	7.9068(4)
<i>b</i> , Å	8.8429(6)	8.8511(5)	8.7710(5)
<i>c</i> , Å	20.7838(12)	20.6032(13)	14.0259(6)
<i>α</i> , °	90	90	105.762(2)
<i>β</i> , °	100.101(2)	106.793(2)	98.604(2)
γ, °	90	90	97.406(2)
<i>V</i> , Å ³	2207.7(2)	2213.2(2)	910.99(8)
Ζ	4	4	2
$ ho_{ m calcd},{ m Mg}~{ m m}^{-3}$	1.778	2.034	2.272
μ (Mo K α), mm ⁻¹	1.730	2.834	3.797
<i>F</i> (000)	1168	1296	580
θ range, deg	1 to 27.5	1 to 27	1 to 27.5
No. of reflns collected	42725	30575	24977
No. indep. Reflns	5091	4549	4208
No. obsd reflns with $(I \ge 2\sigma(I))$, R_{int}	4626, 0.026	4401, 0.024	3725, 0.022
No. refined params	279	259	202
GooF (F^2)	1.212	1.306	1.098
$R_1(F)(I > 2\sigma(I))$	0.041	0.040	0.026
$wR_2(F^2)$ (all data)	0.088	0.100	0.056
Largest diff peak/hole, e Å ⁻³	1.051 / -2.351	1.132 / -2.044	1.791 / -1.972
CCDC	2254922	2254921	2254920

Table S1 (continuation).

Crystal data and structure refinement of studied compounds.

 $\frac{R_{\text{int}} = \sum |F_o^2 - F_{\text{o,mean}}| / \sum F_o^2, \text{ S} = [\sum (w(F_o^2 - F_c^2)^2) / (N_{\text{diffrs}} - N_{\text{params}})]^{\frac{1}{2}} \text{ for all data, } R(F) = \sum |F_o| - |F_c| | / \sum |F_o| \text{ for observed data, } wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / (\sum w(F_o^2)^2)]^{\frac{1}{2}} \text{ for all data.}$

	[OCN ^{tBu} TeCl ₂] ₂ O
Formula	$C_{24}H_{28}Cl_4N_2O_3Te_2$
Formula weight, g mol ⁻¹	789.48
Crystal system	monoclinic
Crystal size, mm	$0.59 \times 0.38 \times 0.22$
Space group	P-2 ₁ /n
<i>a</i> , Å	9.628(4)
<i>b</i> , Å	22.625(10)
<i>c</i> , Å	13.848(6)
<i>α</i> , °	90
<i>β</i> , °	107.181(15)
γ, °	90
<i>V</i> , Å ³	2882(2)
Ζ	4
$ ho_{ m calcd},{ m Mg}\;{ m m}^{-3}$	1.820
μ (Mo K α), mm ⁻¹	2.424
<i>F</i> (000)	1528
θ range, deg	1 to 26.5
No. of reflns collected	70961
No. indep. Reflns	5946
No. obsd reflns with $(I > 2\sigma(I))$, R_{int}	5550, 0.019
No. refined params	316
GooF (F^2)	1.088
$R_1(F)(I > 2\sigma(I))$	0.033
$wR_2(F^2)$ (all data)	0.076
Largest diff peak/hole, e Å $^{-3}$	2.167 / -2.164
CCDC	2254926

 Table S1 (continuation).
 Crystal data and structure refinement of studied compounds.

 $\frac{|E| = \sum |F_o|^2 - F_{o,mean}|^2 |\sum F_o|^2}{|F_o| - |F_c|| |\sum |F_o| + |F_o|$

4) Theoretical study

Table S2. Topological and integrated bond properties from AIM and ELI-D of compounds [CN^{*t*Bu}TeCl₂]SbF₆, [CN^{Dipp}Te]SbF₆ as well as on the cations [NCN^{*t*Bu}Te]⁺, [NCN^{*t*Bu}TeCl₂]⁺ and [NCN^{Dipp}Te]⁺. For comparison the already reported data of [CN^{*t*Bu}Te]⁺ are also listed (ref. 23 of the main manuscript).

model	contact or basin	d [Å]	ρ(r) [eÅ ⁻ 3]	∇²ρ(r) [eÅ⁻⁵]	3	G/ρ(r) [a.u.]	H/ρ(r) [a.u.]	δ(Te,X)	Neli [e]	γeli
[CN ^{/Bu} TeCl2]SbF6	Te–N	2.197	0.64	2.8	0.02	0.70	-0.40	0.60	2.45	1.71
(lin. Cl–Te–Cl)	Te-F3	2.244	0.42	4.4	0.09	0.89	-0.15	0.37		
	Te-Cl22	2.484	0.52	1.5	0.05	0.56	-0.36	0.73		
	Te-Cl23	2.456	0.55	1.5	0.04	0.57	-0.38	0.77		
[CN ^{tBu} TeCl ₂]SbF ₆	Te–N	2.325	0.51	2.2	0.04	0.61	-0.31	0.48	2.54	1.75
(rec. Cl–Te–Cl)	Te-F30	2.412	0.30	3.2	0.13	0.82	-0.08	0.26		
	Te-Cl2	2.419	0.59	1.6	0.03	0.58	-0.40	0.84		
	Te–Cl5	2.360	0.65	1.4	0.06	0.59	-0.44	0.90		
[CN ^{Dipp} Te]SbF6	Te–N	2.100	0.73	5.0	0.26	0.90	-0.43	0.82	2.58	1.65
	Te-F3	2.350	0.33	3.5	0.09	0.86	-0.11	0.34		
	Te–F6	3.315	0.06	0.7	0.90	0.74	0.10	0.05		
[CN ^{tBu} Te]SbF6*	Te–N	2.076	0.77	4.7		0.91	-0.45		2.48	1.64
	Te–F	2.689	0.16	1.6		0.76	-0.02			
[NCN ^{tBu} Te] ⁺	Te–N2	2.294	0.51	3.0	0.19	0.71	-0.30	0.60	2.49	1.74
	Te–N4	2.266	0.53	3.2	0.22	0.73	-0.31	0.63	2.58	1.72
[NCN ^{tBu} TeCl ₂] ⁺	Te–N3	2.308	0.52	2.2	0.05	0.61	-0.32	0.51	2.45	1.74
	Te–N6	2.308	0.52	2.2	0.05	0.61	-0.32	0.50	2.45	1.74
	Te-Cl1	2.468	0.54	1.5	0.05	0.56	-0.37	0.74		
	Te–Cl5	2.468	0.54	1.5	0.05	0.56	-0.37	0.74		
[NCN ^{Dipp} Te] ⁺	Te–N2	2.248	0.55	3.3	0.20	0.75	-0.33	0.62	2.48	1.72
	Te–N4	2.243	0.56	3.3	0.21	0.75	-0.33	0.63	2.49	1.71

* see reference 23 of main manuscript.

Table S3. Atomic charges [in e], derived from the AIM analysis and Natural PopulationAnalysis of compounds $[CN^{rBu}TeCl_2]SbF_6$, $[CN^{Dipp}Te]SbF_6$ as well as on the cations $[NCN^{rBu}Te]^+$, $[NCN^{rBu}TeCl_2]^+$ and $[NCN^{Dipp}Te]^+$.

	Т	`e	N1 (N2 (b	(top) otton)	1	F	Cl1 Cl2 (b	(top) ottom)
	q аім	Q NPA	q аім	Q NPA	q аім	Q NPA	q аім	Q NPA
[CN ^{tBu} TeCl ₂]SbF ₆ (lin. Cl–Te–Cl)	1.83	1.81	-1.23	-0.56	-0.73	-0.68	-0.56	-0.51
							-0.52	-0.48
[CN ^{tBu} TeCl2]SbF6 (rec. Cl-Te-Cl)	1.77	1.72	-1.22	-0.56	-0.74	-0.69	-0.52	-0.45
							-0.46	-0.38
[CN ^{Dipp} Te]SbF6	1.09	1.10	-1.28	-0.59	-0.73	-0.67		
[NCN ^{tBu} Te] ⁺	0.99	1.00	-1.20	-0.53				
			-1.19	-0.54				
[NCN ^{tBu} TeCl ₂] ⁺	1.75	1.72	-1.21	-0.52			-0.54	-0.48
			-1.21	-0.52			-0.54	-0.48
[NCN ^{Dipp} Te] ⁺	1.04	1.05	-1.26	-0.54				
			-1.26	-0.54				

Table S4. Second order perturbation theory analysis derived from NBO analysis of selected interactions of compounds $[CN^{r_{Bu}}TeCl_2]SbF_6$, $[CN^{Dipp}Te]SbF_6$ as well as on the cations $[NCN^{r_{Bu}}Te]^+$, $[NCN^{r_{Bu}}TeCl_2]^+$ and $[NCN^{Dipp}Te]^+$ with respective occupancies given in brackets.

	Donor NBO	Acceptor NBO	Energy [kcal mol ⁻¹]
[CN ^{rBu} TeCl ₂]SbF ₆	LP(3)F3 (1.90794)	RY(1)Te (0.31667)	10.29
(lin. Cl–Te–Cl)	LP(1)N (1.63661)	RY(1)Te (0.31667)	37.44
	BD(1)Te-Cl22 (1.85806)	BD*(1)Te-Cl23 (0.24795)	59.59
	BD(1)Te-Cl22 (1.85806)	RY(1)Te (0.31667)	29.91
	BD(1)Te-Cl23 (1.85239)	BD*(1)Te-Cl22 (0.26057)	63.52
	BD(1)Te-Cl23 (1.85239)	RY(1)Te (0.31667)	31.73
[CN ^{tBu} TeCl2]SbF6	LP(3)F30 (1.93947)	BD*(1)Te-Cl5 (0.14510)	13.55
(rec. Cl–Te–Cl)	LP(1)N3 (1.70144)	BD*(1)Te-Cl2 (0.27237)	53.91
[CN ^{Dipp} Te]SbF6	LP(3)F3 (1.90475)	BD*(1)Te-N (0.11949)	20.81
[NCN ^{<i>t</i>Bu} Te] ⁺	LP(1)N2 (1.68533)	LV(1)Te (0.55477)	103.73
	LP(1) N4 (1.67844)	LV(1)Te (0.55477)	111.10
[NCN ^{<i>t</i>Bu} TeCl ₂] ⁺	LP(1)N3 (1.67240)	RY(1)Te (0.64751)	119.72
	LP(1)N6 (1.67241)	RY(1)Te (0.64751)	119.73
	BD(1)Te-Cl2 (1.82537)	BD*(1)Te-Cl5 (0.13684)	106.08
	BD(1)Te-Cl5 (1.82537)	BD*(1)Te-Cl2 (0.17640)	106.09
[NCN ^{Dipp} Te] ⁺	LP(1)N2 (1.66946)	LV(1)Te (0.53525)	108.79
	LP(1)N4 (1.66756)	LV(1)Te (0.53525)	110.89

Table S5. Additionally, a 3-center, 4-electron hyperbond was detected in the NBO analysis for [CN^{*t*Bu}TeCl₂]SbF₆ with the rectangular Cl–Te–Cl linkage.

	Hyperbond A:-B-:C	%A-B/%B-C	Occupation
[CN ^{1Bu} TeCl2]SbF6	Cl2:-Te-:N3	65.0/35.0	3.9566
(rec. Cl–Te–Cl)			

	contact	WBI	NLMO/NPA	δ(Te,X)
[CN ^{tBu} TeCl ₂]SbF ₆	Te–N	0.47	0.31	0.60
(lin. Cl–Te–Cl)	Te–F3	0.19	0.10	0.37
	Te-Cl22	0.58	0.41	0.73
	Te-Cl23	0.62	0.44	0.77
[CN ^{rBu} TeCl2]SbF6	Te–N	0.33	0.17	0.48
(rec. Cl–Te–Cl)	Te-F30	0.11	0.05	0.26
	Te-Cl2	0.69	0.50	0.84
	Te-Cl5	0.79	0.73	0.90
[CN ^{Dipp} Te]SbF6	Te–N	0.63	0.38	0.82
	Te–F3	0.15	0.08	0.34
	Te–F6	0.01	0.01	0.05
[NCN ^{<i>t</i>Bu} Te] ⁺	Te–N2	0.43	0.23	0.60
	Te–N4	0.46	0.28	0.63
[NCN ^{tBu} TeCl ₂] ⁺	Te–N3	0.38	0.25	0.51
	Te–N6	0.38	0.25	0.50
	Te-Cl1	0.59	0.43	0.74
	Te-Cl5	0.59	0.43	0.74
[NCN ^{Dipp} Te] ⁺	Te–N2	0.25	0.45	0.62
	Te–N4	0.28	0.45	0.63

 $\label{eq:solution} \begin{array}{l} \textbf{Table S6. Wiberg Bond Indices (WBI), NLMO/NPA Bond Orders and delocalization index (\delta) \\ of compounds [CN'^{Bu}TeCl_2]SbF6, [CN^{Dipp}Te]SbF6 as well as on the cations [NCN'^{Bu}Te]^+, \\ [NCN'^{Bu}TeCl_2]^+ \ and [NCN^{Dipp}Te]^+. \end{array}$

Figure S93. *left:* AIM molecular graph of $[CN^{tBu}TeCl_2]SbF_6$ (linear Cl–Te–Cl linkage) with bond critical points as red spheres and bond paths in orange as well as NCI iso-surfaces of at s(r) = 0.5 color coded with $sign(\lambda_2)\rho$ in a. u. Blue surfaces refer to attractive forces and red to repulsive forces. Green indicates weak interactions. *Right:* ELI-D localization domain representation at *iso*-value of 1.5.

Figure S94. *left:* AIM molecular graph of $[CN^{tBu}TeCl_2]SbF_6$ (rectangular Cl–Te–Cl linkage) with bond critical points as red spheres and bond paths in orange as well as NCI iso-surfaces at s(r) = 0.5 color coded with $sign(\lambda_2)\rho$ in a. u. Blue surfaces refer to attractive forces and red to

repulsive forces. Green indicates weak interactions. *Right:* ELI-D localization domain representation at an *iso*-value of 1.5.

Figure S95. *left:* AIM molecular graph of $[CN^{Dipp}Te]SbF_6$ with bond critical points as red spheres and bond paths in orange as well as NCI iso-surfaces at s(r) = 0.5 color coded with $sign(\lambda_2)\rho$ in a. u. Blue surfaces refer to attractive forces and red to repulsive forces. Green indicates weak interactions. *Right:* ELI-D localization domain representation at an *iso*-value of 1.5.

Figure S96. *left:* AIM molecular graph of $[NCN'^{Bu}Te]^+$ with bond critical points as red spheres and bond paths in orange as well as NCI iso-surfaces at s(r) = 0.5 color coded with $sign(\lambda_2)\rho$ in a. u. Blue surfaces refer to attractive forces and red to repulsive forces. Green indicates weak interactions. *Right:* ELI-D localization domain representation at an *iso*-value of 1.5.

Figure S97. *left:* AIM molecular graph of $[NCN^{tBu}TeCl_2]^+$ with bond critical points as red spheres and bond paths in orange as well as NCI iso-surfaces at s(r) = 0.5 color coded with $sign(\lambda_2)\rho$ in a. u. Blue surfaces refer to attractive forces and red to repulsive forces. Green indicates weak interactions. *Right:* ELI-D localization domain representation at an *iso*-value of 1.5.

Figure S98. *left:* AIM molecular graph of $[NCN^{Dipp}Te]^+$ with bond critical points as red spheres and bond paths in orange as well as NCI iso-surfaces at s(r) = 0.5 color coded with $sign(\lambda_2)\rho$ in a. u. Blue surfaces refer to attractive forces and red to repulsive forces. Green indicates weak interactions. *Right:* ELI-D localization domain representation at an *iso*-value of 1.5.

5) HR-MALDI-MS

Theoretical HR-MALDI-MS spectra were calculated using Qual Browser, Thermo Xcalibur 4.0.27.10 software (Thermo Scientific).

Figure S99. Experimental (top) and calculated (bottom) HR-MALDI-MS of $[NCN^{Dipp}Te]Br$.

Figure S100. Experimental (top) and calculated (bottom) HR-MALDI-MS of [NCN^{Dipp}Te]SbF6.

Figure S101. Experimental (top) and calculated (bottom) HR-MALDI-MS of [CN^{Dipp}Te]SbF₆.

Figure S102. Experimental (top) and calculated (bottom) HR-MALDI-MS of CN^{Dipp}TeCl.

Figure S103. Experimental (top) and calculated (bottom) HR-MALDI-MS of [NCN^{/Bu}Te]Br.

Figure S104. Experimental (top) and calculated (bottom) HR-MALDI-MS of [NCN^{tBu}Te]OTf.

Figure S105. Experimental (top) and calculated (bottom) HR-MALDI-MS of [NCN^{tBu}Te]SbF6.