Electronic Supplementary Information (ESI) for

Nano-sized aggregate Ti_3C_2 - TiO_2 supported on the surface of Ag_2NCN as a Z-scheme catalyst with enhanced visible light photocatalytic performance

Haidong Yu ^a, Xuan Cao ^{b,*}, Shuji Zhang ^a, Shanxia Luo ^a, Liang Feng ^a, Xiaoyu An ^a and Haibing Jiang ^{a,*}

^a Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China

^b Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China

*Correspondence E-mail: <u>caoxuan@syuct.edu.cn</u>

Figure S1 (a) Survey XPS spectrum of as-prepared catalysts. (b, c) XPS spectrum of the Ti 2p and Ag 3d for as-prepared catalysts.

Figure S2 The photocatalytic activities of composites with different content of Ag₂NCN for Rh B degradation under visible light illumination ($\lambda > 420$ nm).

Figure S3 The band gap energies of Ag₂NCN and Ag₂NCN/TiO₂-Ti₃C₂400.

Title	Peak position ev	Peak area(P) CPS.eV	Atomic %
C 1s	284.57	342325.74	47.69
Ag 3d	367.98	2666938.77	17.74
N 1s	397.35	182070.49	16.32
O 1s	531.05	250710.81	13.02
Ti 2p	458.9	148901.43	5.23

Table S1 The main elements percentage ratio for the Ag_2NCN/TiO_2 -Ti₃C₂400 composite detected by XPS.

Synthesis of Ag₂NCN/TiO₂-Ti₃C₂ nanocomposites

Ag₂NCN/TiO₂-Ti₃C₂400 with different content of Ag₂NCN was prepared through a simple physical weak interaction deposition process. AgNO₃ was first dissolved in 20 mL of deionized water. Following that, NH₃·H₂O (1.5 M) aqueous solution was swiftly added and fixed volume to 200mL with deionized water to make a clear solution under magnetic stirring, and afterwards, 0.1 g of TiO₂-Ti₃C₂ was added. After 20 minutes of ultrasonic processing, H₂NCN (5.0 mmol) was added dropwise while being stirred for 30 minutes. The precipitate that resulted was then dried in an oven at 60 °C to produce the products. The amount of reagent added was shown in the Table S2.

Sample	Ag ₂ NCN	$NH_{3} \cdot H_{2}O(1.5M)$	TiO ₂ -Ti ₃ C ₂	H ₂ NCN
	(mmol)	(mL)	(g)	(mL)
TiO ₂ -Ti ₃ C ₂ 400	0	0	0.1	0
Ag ₂ NCN/TiO ₂	1.0	25.0	0.1	1.0
-Ti ₃ C ₂ 400-1	1.0	25.0	0.1	1.0
Ag ₂ NCN/TiO ₂	3.0	75.0	0.1	3.0
-Ti ₃ C ₂ 400-3	5.0	75.0	0.1	5.0
Ag ₂ NCN/TiO ₂	5.0	125.0	0.1	5.0
-Ti ₃ C ₂ 400-5	5.0	125.0	0.1	5.0
Ag ₂ NCN/TiO ₂	7.0	175.0	0.1	7.0
-Ti ₃ C ₂ 400-7	7.0	1/3.0	0.1	7.0

Table S2 The amount of reagent added for preparing $Ag_2NCN/TiO_2-Ti_3C_2400$ with different content of Ag_2NCN .