Electronic Supporting Information

Reactions of [(dmpe)₂MnH(C₂H₄)] with Hydrogermanes to Form Germylene, Germyl, Hydrogermane, and Germanide Complexes

Jeffrey S. Price, Ignacio Vargas-Baca, David J. H. Emslie,* and James F. Britten

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada. Fax: (905)-522-2509; Tel: (905)-525-9140 x 23307

E-mail: emslied@mcmaster.ca

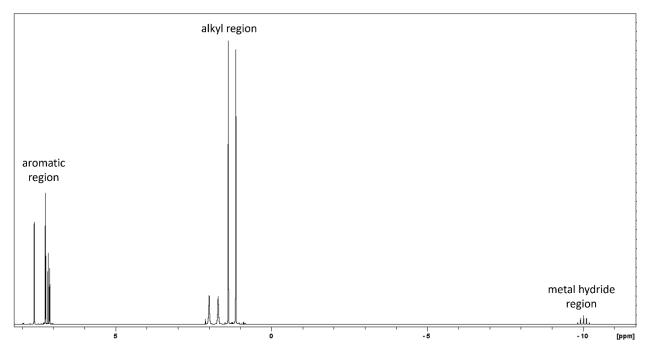
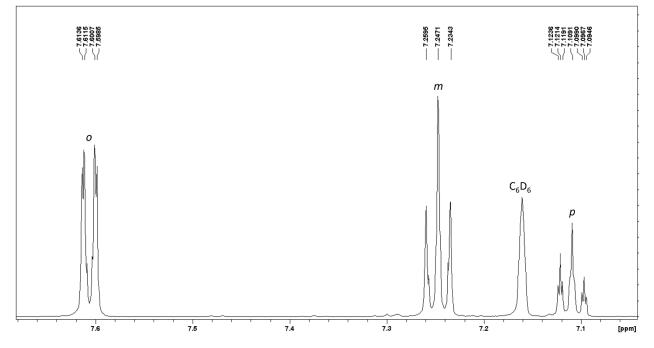
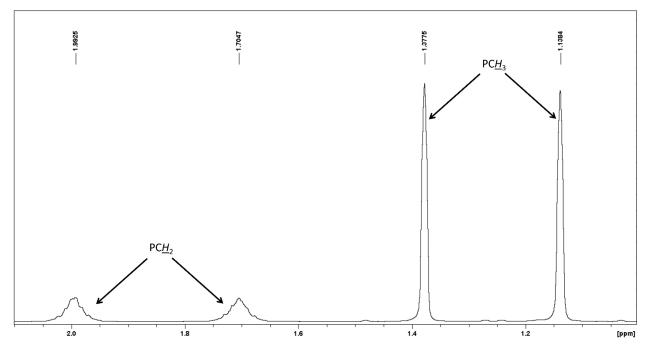
Website: https://emsliegroup.mcmaster.ca/

The supplemental file Cartesian_coordinates_for_calculated_structures.xyz contains the computed Cartesian coordinates of all of the molecules reported in this study. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury (version 3.3 or later, <u>http://www.ccdc.cam.ac.uk/pages/Home.aspx</u>) for visualization and analysis.

Contents	Pages
Selected NMR Spectra for Complexes 2a-b, 3a-b, 4a-b, 5a-b, and 6.	S2-S49
Graphs Showing Relative Concentrations of Manganese-containing Species in Mixtures Containing 3a-b, 4a-b , and 5a-b .	S50
2D Powder X-ray Diffractogram of Crystal Structure of [{(dmpe) ₂ MnH} ₂ (μ -Ge)] (6)	S50
Figure of X-ray Crystal Structure of [O{"BuGe=MnH(dmpe) ₂ } ₂] (7).	S51
Tables of X-ray Crystal Data and Crystal Structure Refinement.	S52-S55
Figures Showing DFT Calculated Structures of 2a-b , 3a-b , 4a-b , 5a-b , and 6 .	S56-S57
Figures Showing Superimposed Calculated and X-ray Structures of 2a, 3a, and trans, trans-6.	S58
Tables of DFT-calculated Bond Metrics, Mayer Bond Orders, and Hirshfeld Charges for 2a-b, 3a-b, 4a-b, 5a-b, and 6 .	S59-S61
Slater-type Molecular Orbitals Involved in Mn–Ge Bonding in 2a and 3a-b .	S61
Overall Deformation Densities of 2a-b, 3a-b, and trans, trans-6.	S62
Selected ETS-NOCV Deformation Densities, NOCV Orbitals, and Fragment Orbital Contributors for 2a-b , 3a-b , and trans,trans-6 .	S63-S68
Miscellaneous [Postulated reversible 1,1-insertion process for <i>cis,trans-6</i> (Scheme S1) and selected room temperature ¹ H and ³¹ P NMR chemical shifts (Table S11)]	S69

Selected Abbreviations;

Dmpe = 1,2-bis(dimethylphosphino)ethane sat. = satellite Selected NMR Spectra for Complexes 2a-b, 3a-b, 4a-b, 5a-b, and 6.

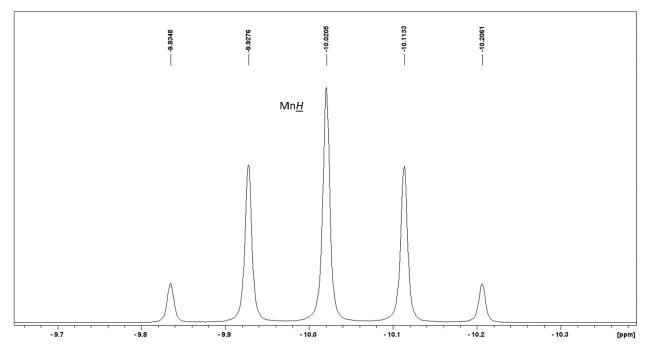
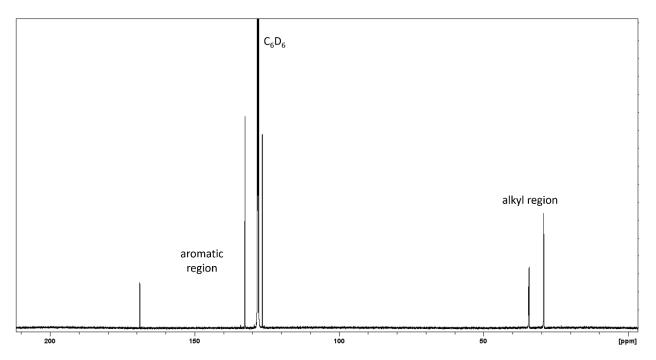
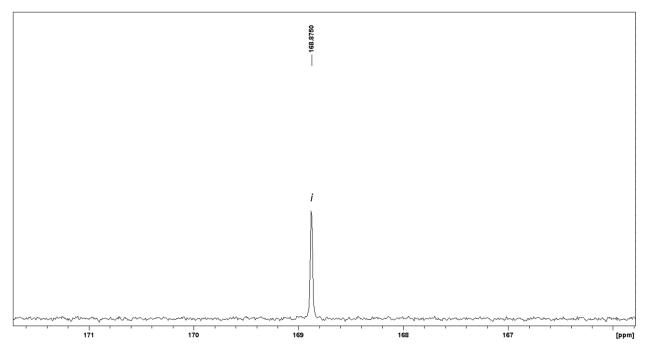
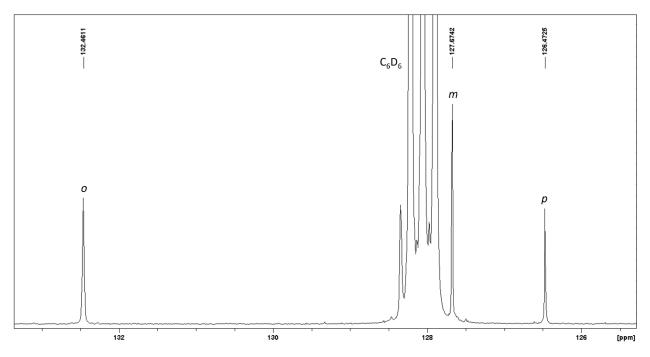

Figure S1. ¹H NMR spectrum of [(dmpe)₂MnH(=GePh₂)] (2a) in C₆D₆ (600 MHz, 298 K).

Figure S2. Expanded aromatic region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) in C₆D₆ (600 MHz, 298 K).

Figure S3. Expanded alkyl region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) in C₆D₆ (600 MHz, 298 K).

Figure S4. Expanded metal hydride region of the ¹H NMR spectrum of [(dmpe)₂MnH(=GePh₂)] (**2a**) in C₆D₆ (600 MHz, 298 K).

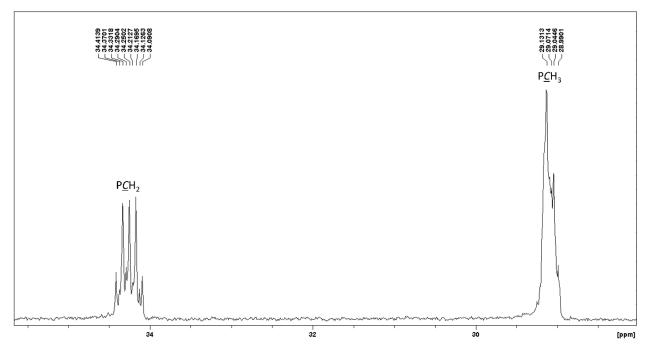
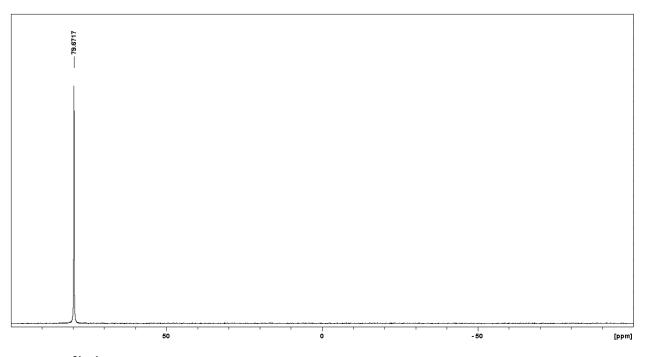
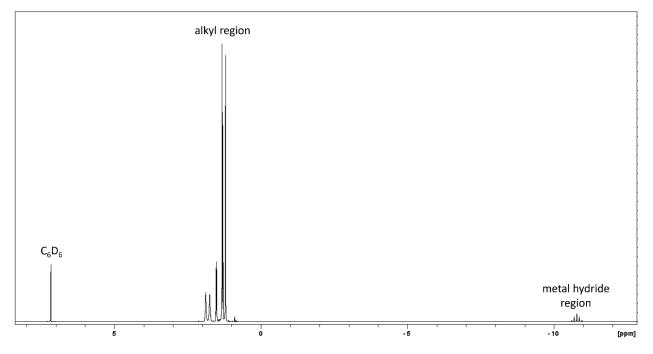
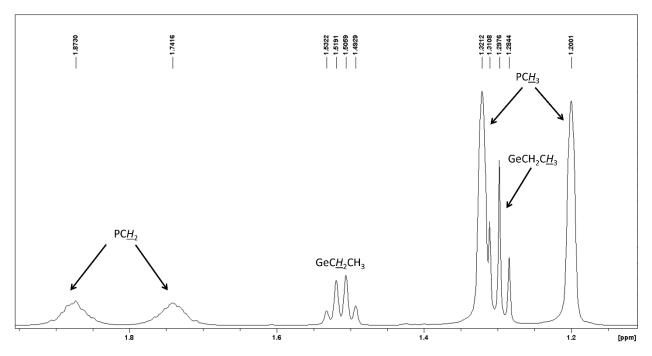

Figure S5. ¹³C{¹H} NMR spectrum of [(dmpe)₂MnH(=GePh₂)] (2a) in C₆D₆ (151 MHz, 298 K).

Figure S6. Expanded higher frequency aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) in C₆D₆ (151 MHz, 298 K).

Figure S7. Expanded lower frequency aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) in C₆D₆ (151 MHz, 298 K).

Figure S8. Expanded alkyl region of the ${}^{13}C{}^{1}H$ NMR spectrum of [(dmpe)₂MnH(=GePh₂)] (**2a**) in C₆D₆ (151 MHz, 298 K).

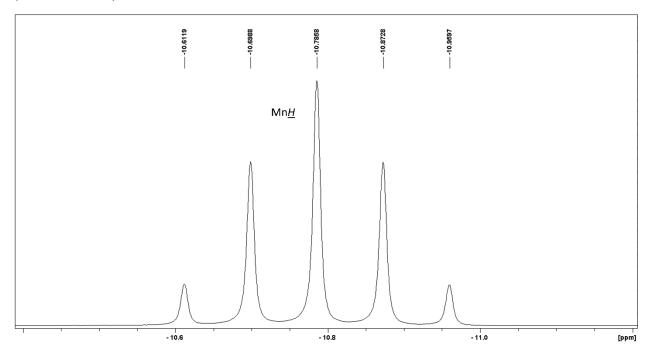
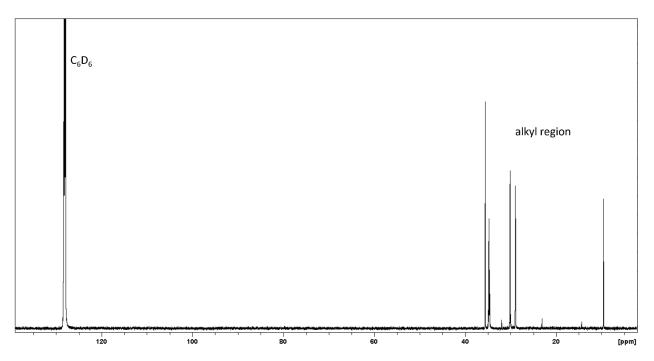
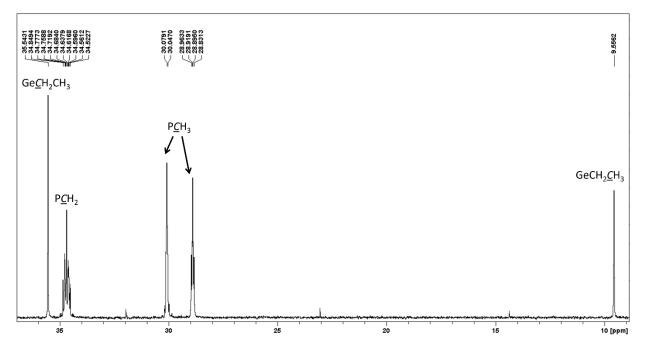
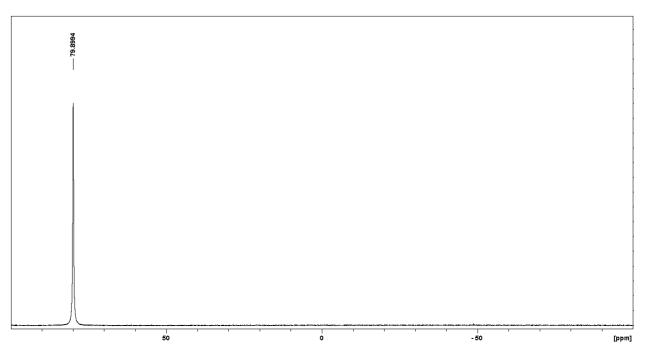
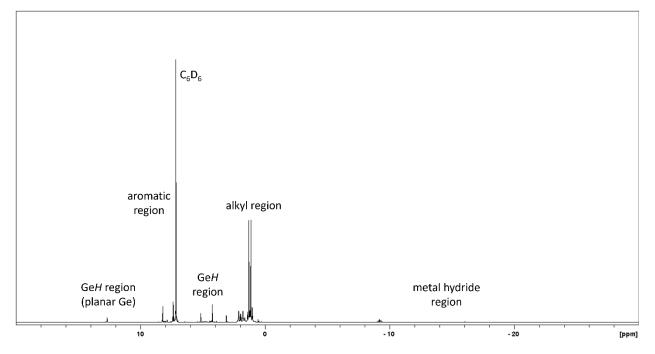

Figure S9. ³¹P{¹H} NMR spectrum of [(dmpe)₂MnH(=GePh₂)] (2a) in C₆D₆ (243 MHz, 298 K).

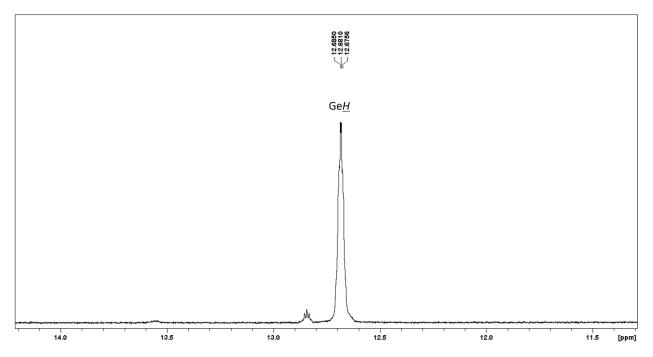
Figure S10. ¹H NMR spectrum of [(dmpe)₂MnH(=GeEt₂)] (**2b**) in C₆D₆ (600 MHz, 298 K).

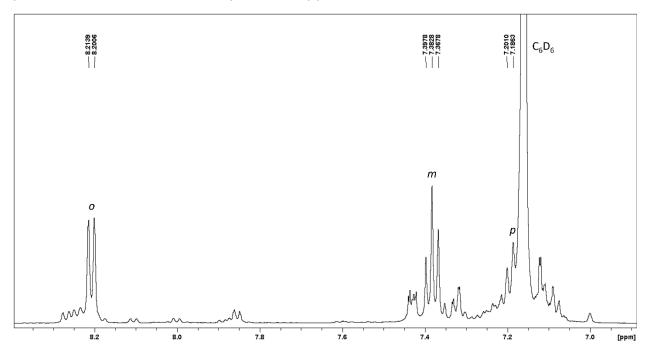
Figure S11. Expanded alkyl region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) in C₆D₆ (600 MHz, 298 K).

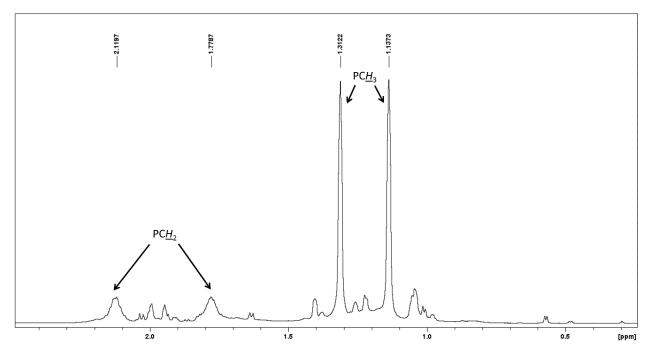
Figure S12. Expanded metal hydride region of the ¹H NMR spectrum of [(dmpe)₂MnH(=GeEt₂)] (**2b**) in C₆D₆ (600 MHz, 298 K).

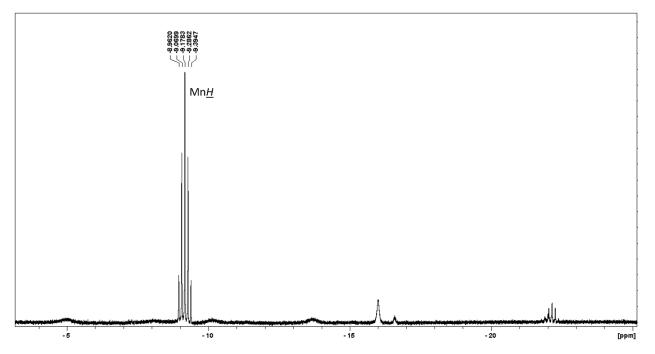




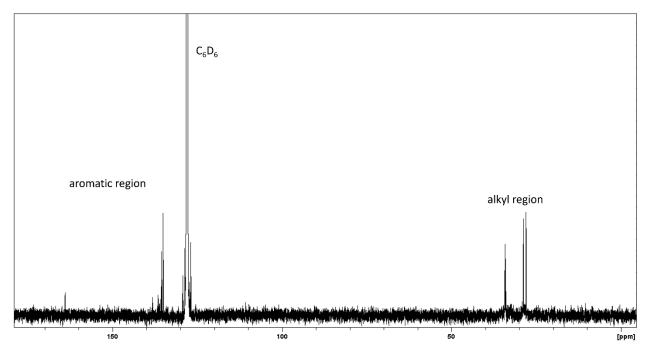

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum of [(dmpe)₂MnH(=GeEt₂)] (2b) in C₆D₆ (151 MHz, 298 K).

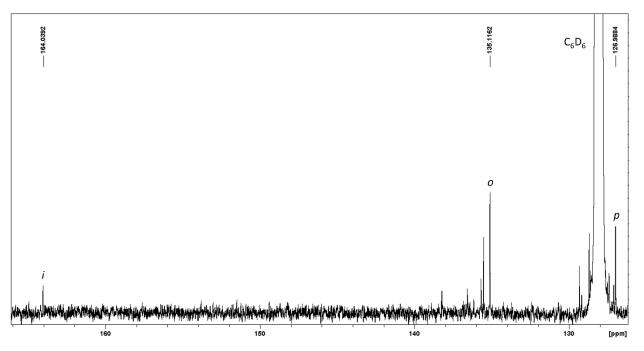

Figure S14. Expanded alkyl region of the ${}^{13}C{}^{1}H$ NMR spectrum of [(dmpe)₂MnH(=GeEt₂)] (**2b**) in C₆D₆ (151 MHz, 298 K).

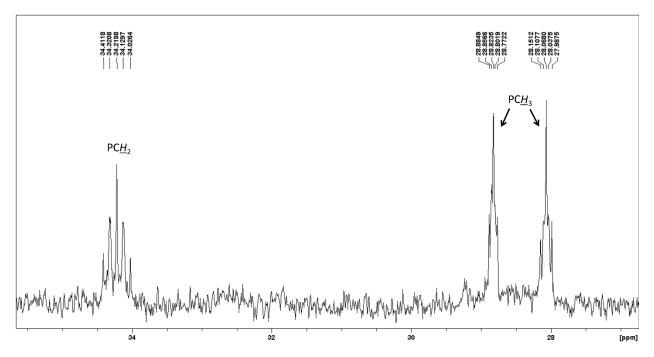

Figure S15. ³¹P{¹H} NMR spectrum of [(dmpe)₂MnH(=GeEt₂)] (**2b**) in C₆D₆ (243 MHz, 298 K).


Figure S16. ¹H NMR spectrum of $[(dmpe)_2MnH(=GeHPh)]$ (**3a**) in C₆D₆ (500 MHz, 298 K). Various decomposition products are also detectable in the spectrum.


Figure S17. Expanded high frequency region associated with Ge*H* environments on planar Ge atoms of the ¹H NMR spectrum of [(dmpe)₂MnH(=GeHPh)] (**3a**) in C₆D₆ (500 MHz, 298 K). Various decomposition products are also detectable in the spectrum; only peaks from **3a** are labelled.


Figure S18. Expanded aromatic region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GeHPh)]$ (**3a**) in C₆D₆ (500 MHz, 298 K). Various decomposition products are also detectable in the spectrum; only peaks from **3a** are labelled.


Figure S19. Expanded alkyl region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GeHPh)]$ (**3a**) in C₆D₆ (500 MHz, 298 K). Various decomposition products are also detectable in the spectrum; only peaks from **3a** are labelled.


Figure S20. Expanded metal hydride region of the ¹H NMR spectrum of [(dmpe)₂MnH(=GeHPh)] (**3a**) in C_6D_6 (500 MHz, 298 K). Various decomposition products are also detectable in the spectrum; only peaks from **3a** are labelled.

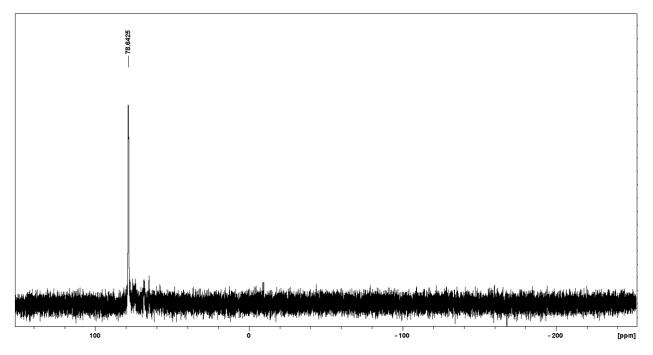
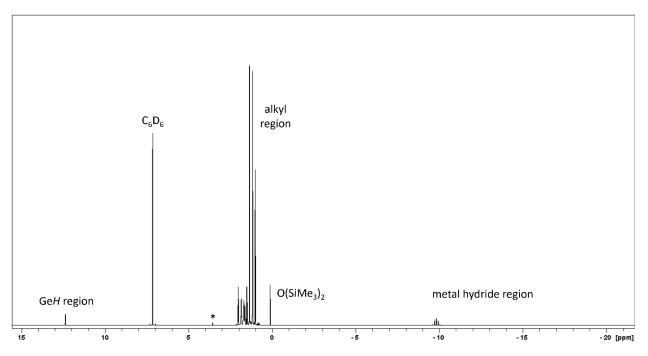
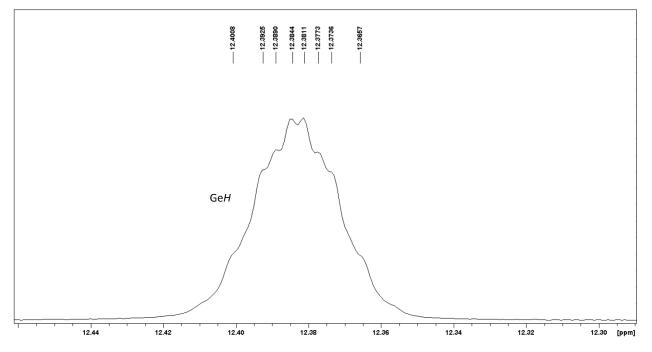
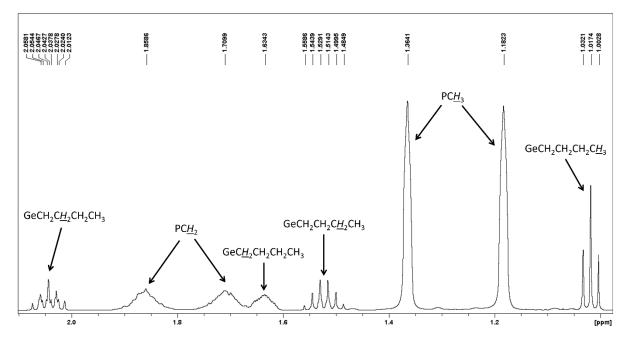

Figure S21. ¹³C{¹H} NMR spectrum of $[(dmpe)_2MnH(=GeHPh)]$ (**3a**) in C₆D₆ (126 MHz, 298 K). Various decomposition products are also detectable in the spectrum.

Figure S22. Expanded aromatic region of the ¹³C{¹H} NMR spectrum of [(dmpe)₂MnH(=GeHPh)] (**3a**) in C₆D₆ (126 MHz, 298 K). Various decomposition products are also detectable in the spectrum; only peaks from **3a** are labelled.

Figure S23. Expanded alkyl region of the ¹³C{¹H} NMR spectrum of [(dmpe)₂MnH(=GeHPh)] (**3a**) in C₆D₆ (126 MHz, 298 K). Various decomposition products are also detectable in the spectrum; only peaks from **3a** are labelled.

Figure S24. ³¹P{¹H} NMR spectrum of $[(dmpe)_2MnH(=GeHPh)]$ (**3a**) in C₆D₆ (202 MHz, 298 K). Various decomposition products are also detectable in the spectrum. Only the peak from **3a** has been peak-picked.

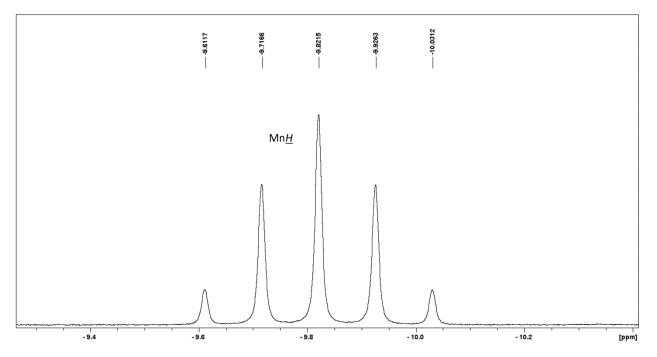

Figure S25. ¹H NMR spectrum of [(dmpe)₂MnH(=GeHⁿBu)] (3a) in C₆D₆ (500 MHz, 298 K).

Figure S26. Expanded high frequency region associated with GeH environments on planar Ge atoms of the ¹H NMR spectrum of [(dmpe)₂MnH(=GeH"Bu)] (**3a**) in C₆D₆ (500 MHz, 298 K).

Figure S27. Expanded alkyl region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3a**) in C₆D₆ (500 MHz, 298 K).

Figure S28. Expanded metal hydride region of the ¹H NMR spectrum of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3a**) in C₆D₆ (500 MHz, 298 K).

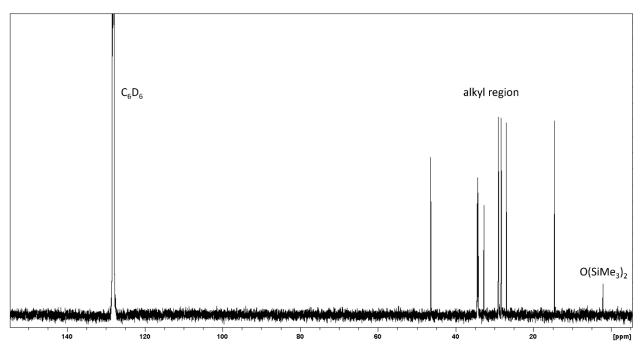
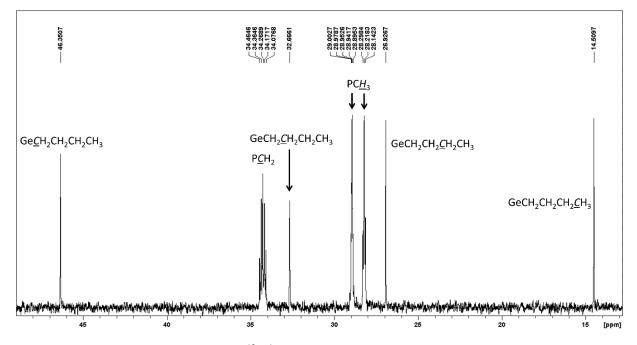
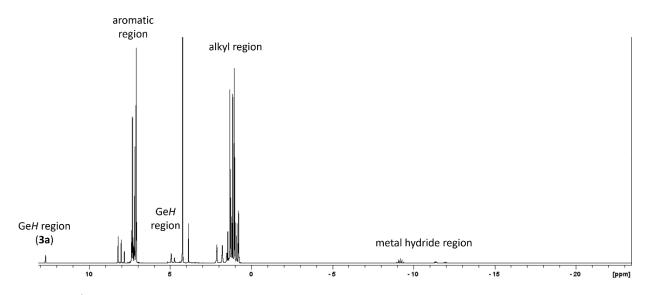
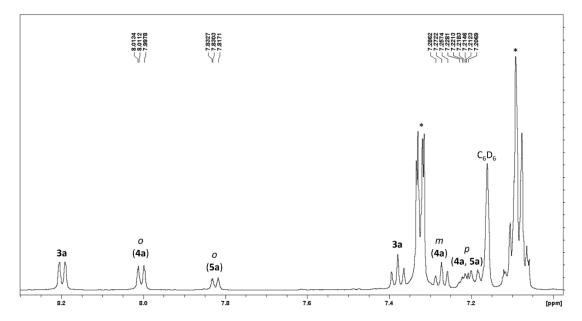
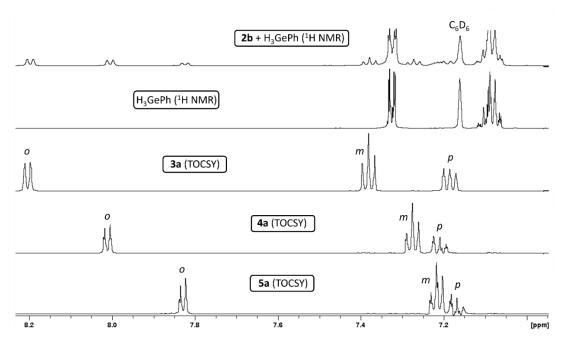
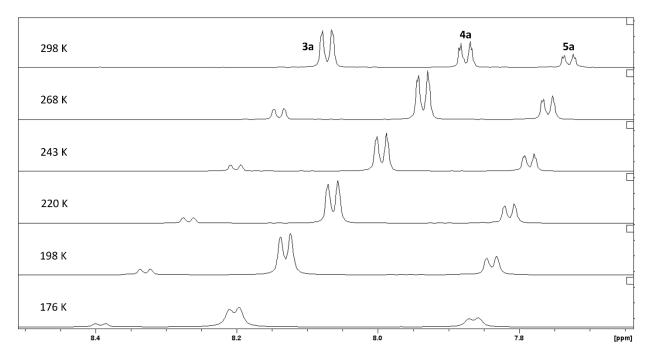



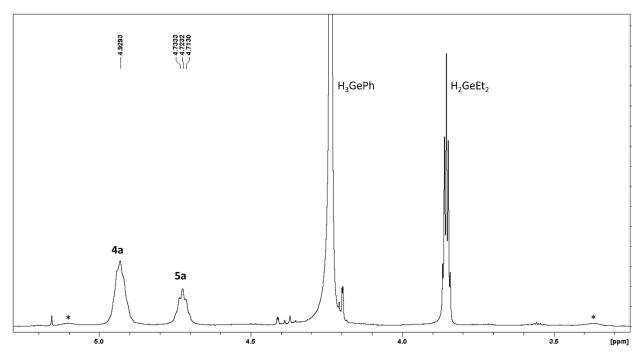
Figure S29. ¹³C{¹H} NMR spectrum of [(dmpe)₂MnH(=GeHⁿBu)] (3a) in C₆D₆ (126 MHz, 298 K).

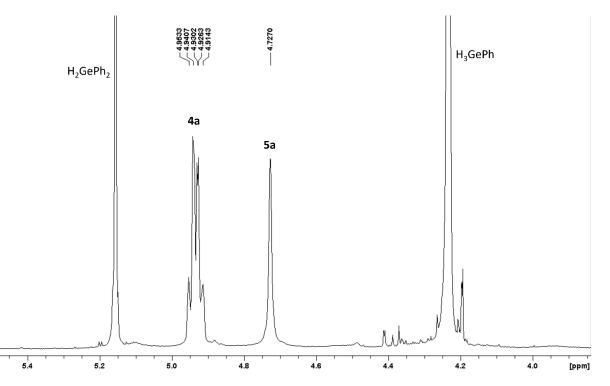
Figure S30. Expanded alkyl region of the ${}^{13}C{}^{1}H$ NMR spectrum of [(dmpe)₂MnH(=GeHⁿBu)] (**3a**) in C₆D₆ (126 MHz, 298 K).

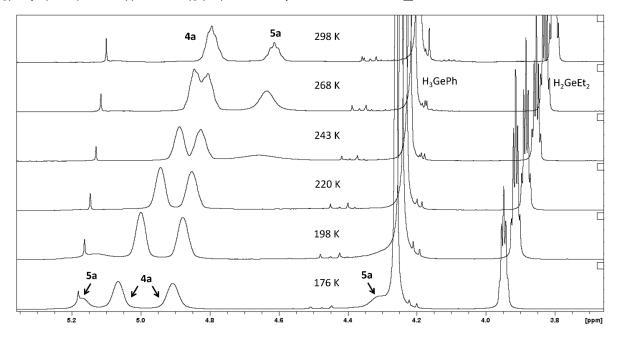




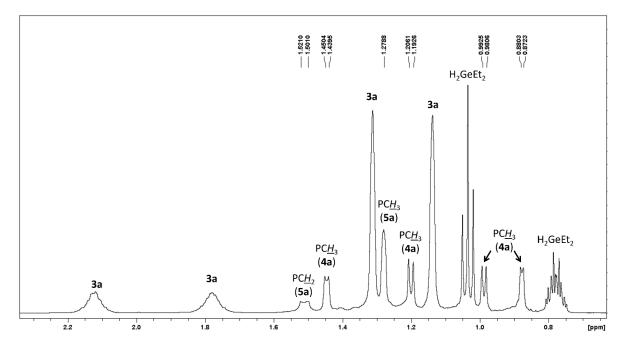

Figure S31. ³¹P{¹H} NMR spectrum of [(dmpe)₂MnH(=GeHⁿBu)] (3a) in C₆D₆ (202 MHz, 298 K).

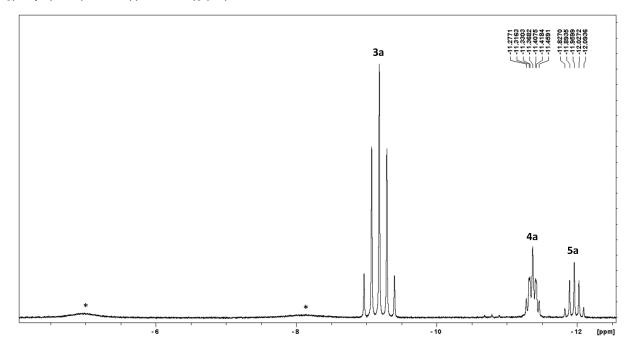

Figure S32. ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*-[(dmpe)_2MnH(GeH_2Ph)_2] (**4a**), and *trans*-[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)] (**5a**).

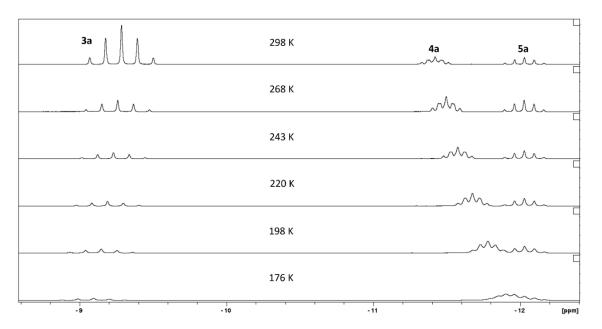

Figure S33. Expanded aromatic region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). * indicates peaks from H₃GePh.

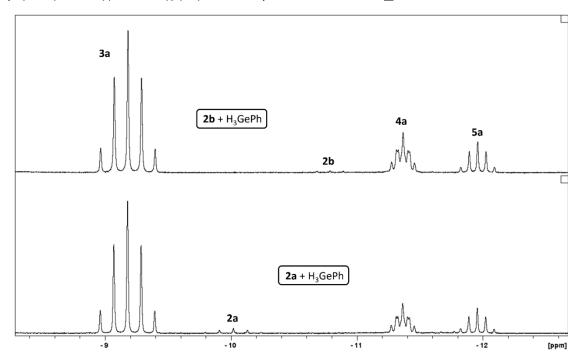

Figure S34. Top; expanded aromatic region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Second from the top; ¹H NMR spectrum of H₃GePh shown for reference. Bottom three; 1D TOCSY NMR spectra of the reaction mixture used to obtain the top ¹H NMR spectrum, with excitation of the *ortho* peaks of (middle) **3a**, (second from the bottom) **4a**, or (bottom) **5a**, illustrating the ¹H NMR environments associated with the phenyl groups of these complexes.

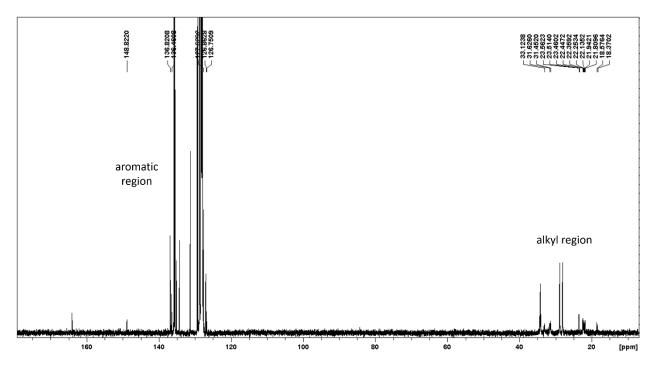

Figure S35. Expanded *ortho* region of variable temperature ¹H NMR spectra of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in *d*₈-toluene (500 MHz), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**).

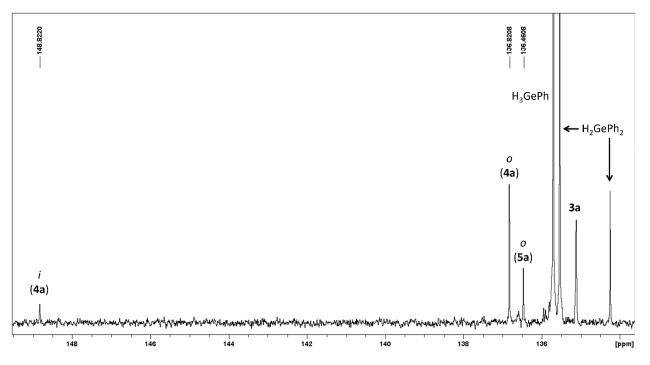

Figure S36. Expanded germyl hydride region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Labelled peaks arise from Ge<u>H</u> environments.

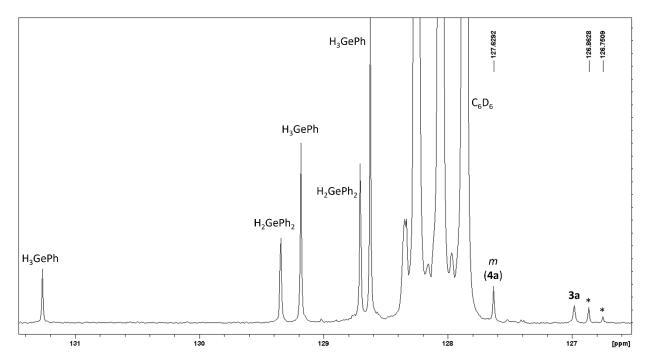

Figure S37. Expanded germyl hydride region of the ¹H{³¹P} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GePh₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Labelled peaks arise from Ge<u>H</u> environments.

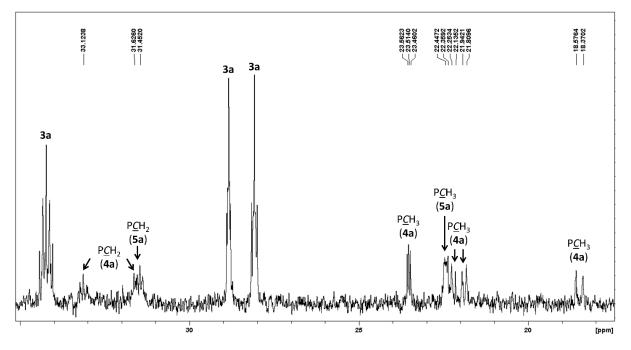

Figure S38. Expanded germyl hydride region of variable temperature ¹H NMR spectra of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in *d*₈-toluene (500 MHz), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Labelled peaks arise from Ge<u>H</u> environments.

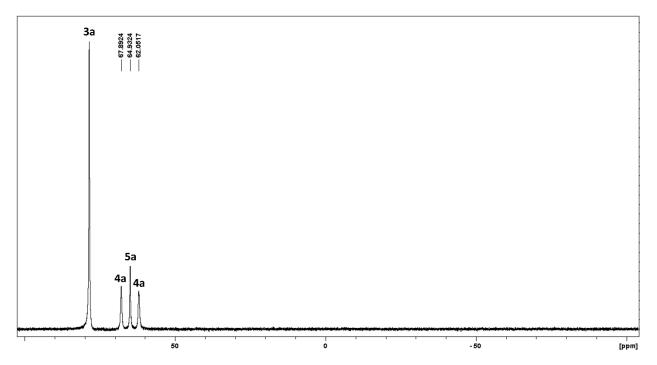

Figure S39. Expanded alkyl region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**).

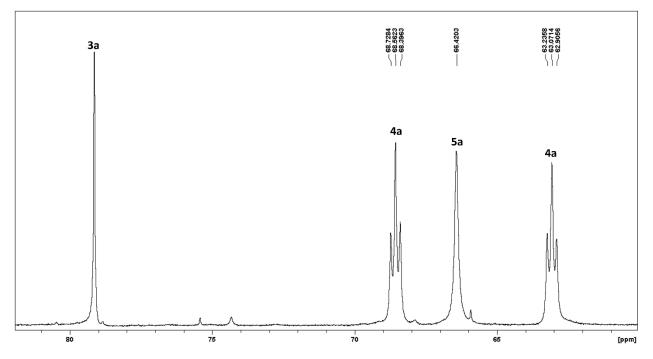

Figure S40. Expanded metal hydride region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Labelled peaks arise from Mn<u>H</u> environments. * indicates peaks arising from decomposition products.

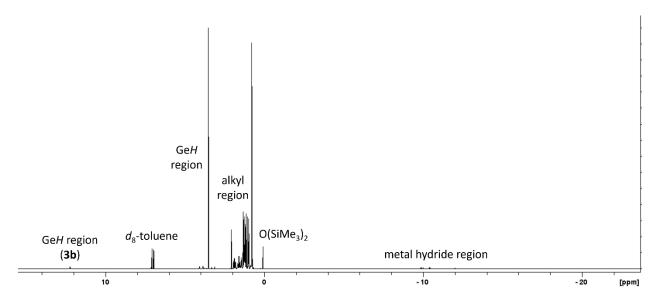

Figure S41. Expanded metal hydride region of variable temperature ¹H NMR spectra of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in *d*₈-toluene (500 MHz), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Labelled peaks arise from Mn<u>*H*</u> environments.

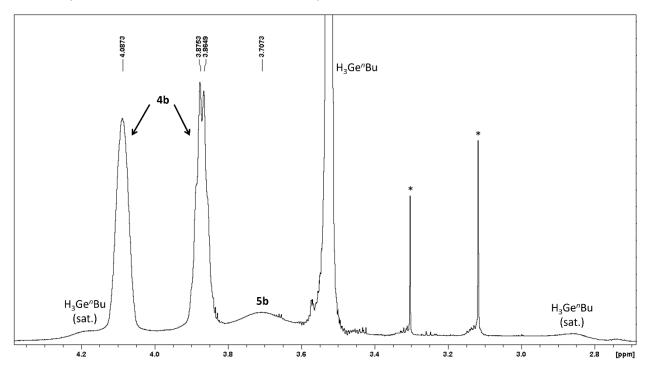

Figure S42. Expanded metal hydride region of the ¹H NMR spectrum of a mixture formed from the reaction of (top) $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) or (bottom) $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GePh in C₆D₆ (500 MHz, 298 K), containing H₃GePh, H₂GeEt₂ (top) or H₂GePh₂ (bottom), $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**; top) or $[(dmpe)_2MnH(=GePh_2)]$ (**2a**; bottom), $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), mer- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and trans- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). Labelled peaks arise from Mn<u>H</u> environments.

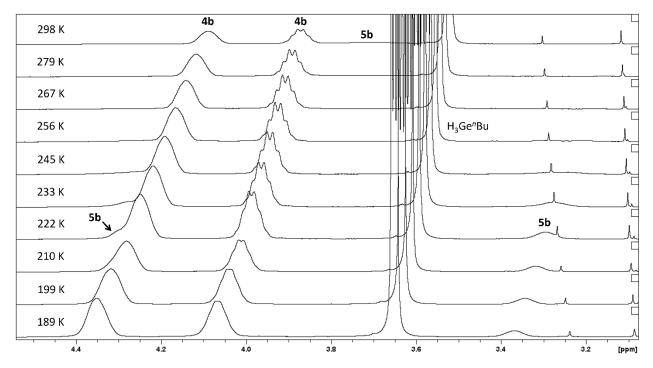

Figure S43. ¹³C{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GePh in C₆D₆ (126 MHz, 298 K), containing H₃GePh, H₂GePh₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)]$ (**5a**).


Figure S44. Expanded higher frequency aromatic region of the ¹³C{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GePh in C₆D₆ (126 MHz, 298 K), containing H₃GePh, H₂GePh₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**).


Figure S45. Expanded lower frequency aromatic region of the ¹³C{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GePh in C₆D₆ (126 MHz, 298 K), containing H₃GePh, H₂GePh₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**). * indicates peaks which could not be assigned definitively to **4a** or **5a**, but were confirmed as arising from these species.


Figure S46. Expanded alkyl region of the ¹³C{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GePh in C₆D₆ (126 MHz, 298 K), containing H₃GePh, H₂GePh₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**).


Figure S47. ³¹P{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in C₆D₆ (202 MHz, 298 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)]$ (**5a**).


Figure S48. ³¹P{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) and an excess of H₃GePh in *d*₈-toluene (202 MHz, 198 K), containing H₃GePh, H₂GeEt₂, $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**).

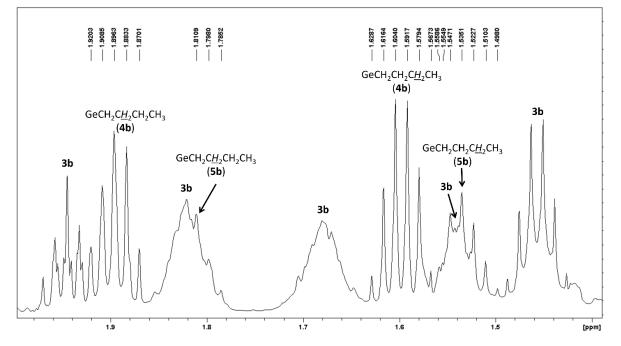
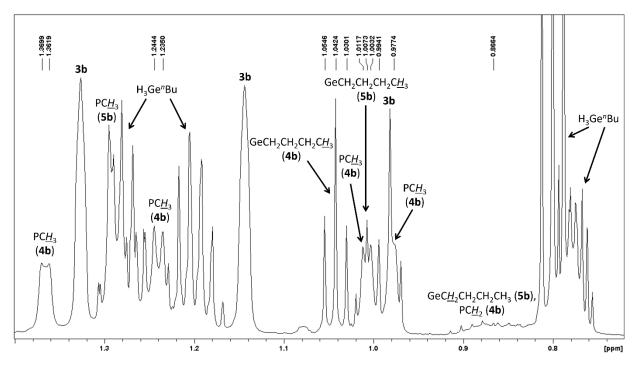
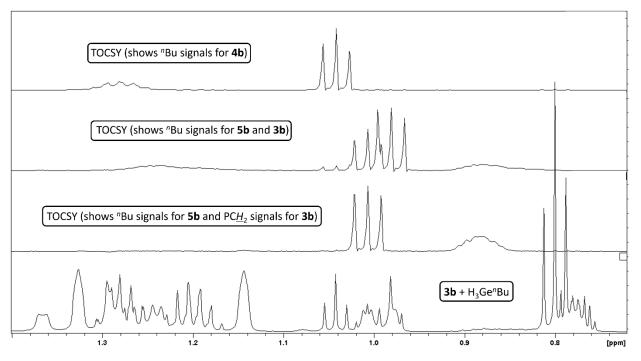
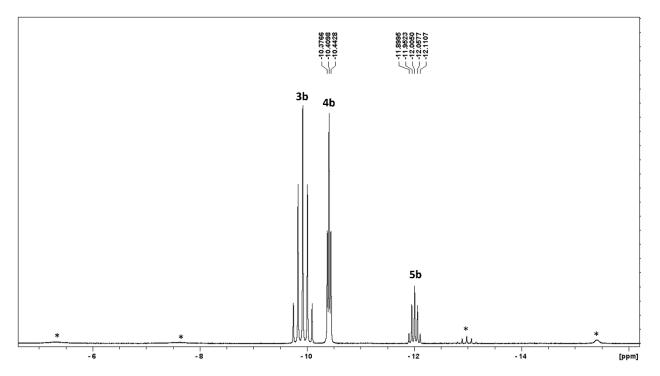
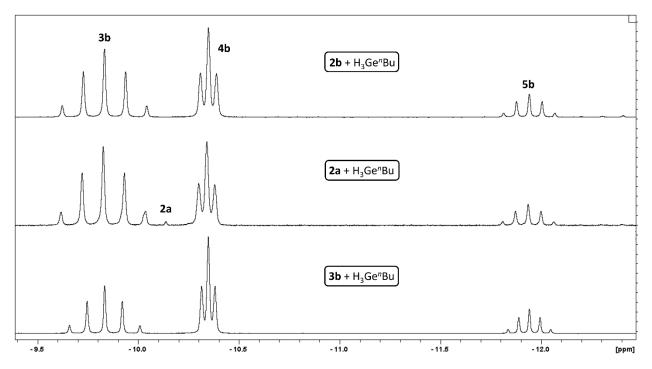

Figure S49. ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in *d*₈-toluene (600 MHz, 298 K), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**).

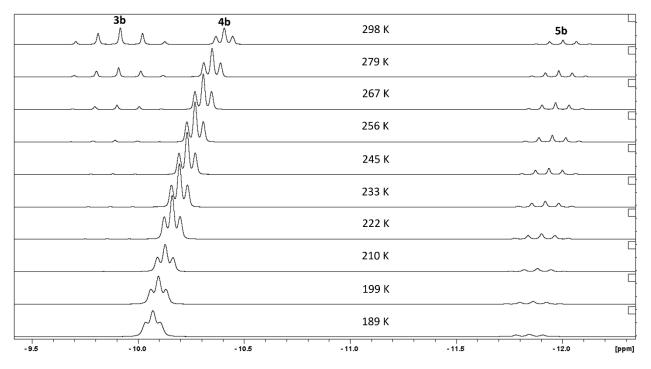

Figure S50. Expanded Ge<u>*H*</u> region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in *d*₈-toluene (600 MHz, 298 K), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**). Labelled peaks arise from Ge<u>*H*</u> environments, and * indicates peaks from impurities in the H₃GeⁿBu used.

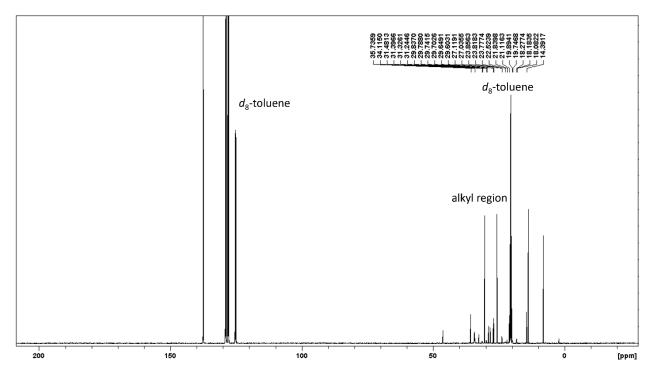

Figure S51. Expanded Ge<u>*H*</u> region of variable temperture ¹H NMR spectra of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H_3Ge^nBu in d_8 -toluene (500 MHz), containing H_3Ge^nBu , $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), $mer-[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and trans- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**). Labelled peaks arise from Ge<u>*H*</u> environments.

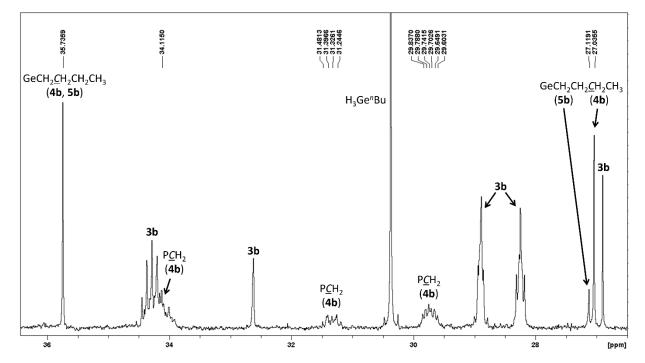

Figure S52. Expanded higher frequency alkyl region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H_3Ge^nBu in d_8 -toluene (600 MHz, 298 K), containing H_3Ge^nBu , $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**).

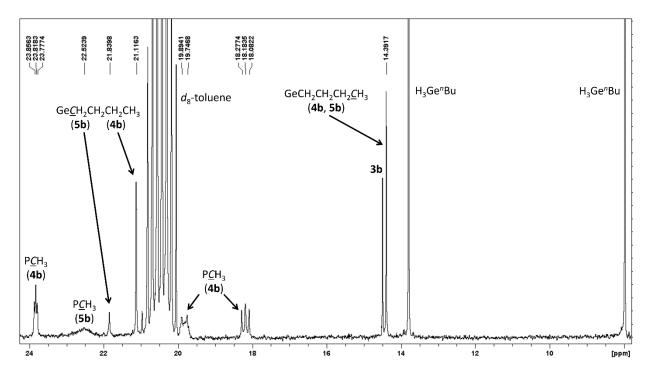

Figure S53. Bottom; expanded higher frequency alkyl region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H_3Ge^nBu in d_8 -toluene (600 MHz, 298 K), containing H_3Ge^nBu , $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**). Top three; 1D TOCSY NMR spectra of the reaction mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H_3Ge^nBu in d_8 -toluene (500 MHz, 298 K), containing H_3Ge^nBu , H_2GePh_2 , $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, [(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, Bu)]$ (**5b**), with excitation at 1.81 (second from the bottom), 1.54 (second from the top), or 1.61 (top) ppm. These spectra illustrate in the higher frequency region of *second from the bottom*; "Bu signals for **5b** and PC<u>H</u>₂ signals for **3b**, *second from the top*; "Bu signals for **5b** and **3b**, and *top*; "Bu signals for **4b**.

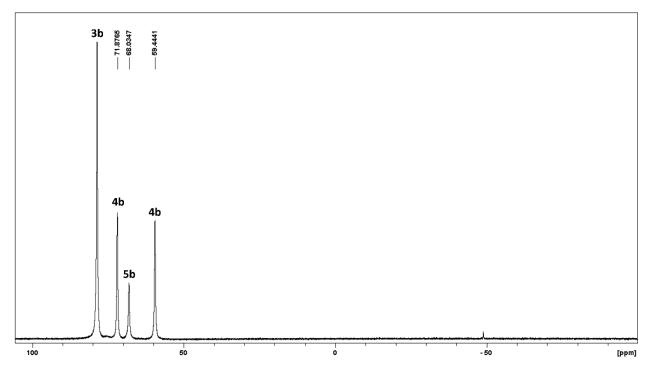

Figure S54. Expanded lower frequency alkyl region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H_3Ge^nBu in d_8 -toluene (600 MHz, 298 K), containing H_3Ge^nBu , $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**).

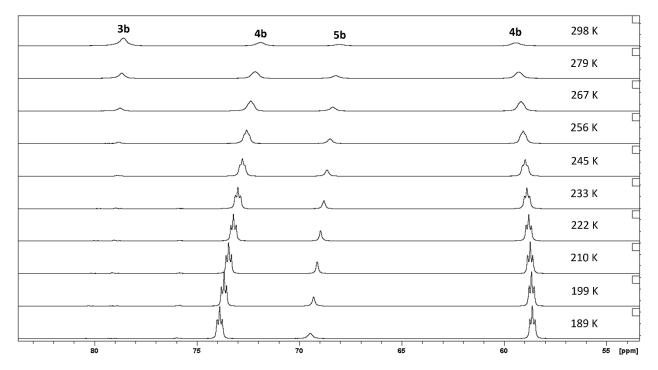

Figure S55. Bottom; expanded lower frequency alkyl region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in *d*₈-toluene (600 MHz, 298 K), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**). Top three; 1D TOCSY NMR spectra of the reaction mixture formed from the reaction of $[(dmpe)_2MnH(=GePh_2)]$ (**2a**) and an excess of H₃GeⁿBu in *d*₈-toluene (500 MHz, 298 K), containing H₃GeⁿBu, H₂GePh₂, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, [(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu), H_2GePh_2, I(H_2^nBu)]$ (**5b**), with excitation at 1.81 (second from the bottom), 1.54 (second from the top), or 1.61 (top) ppm. These spectra illustrate in the lower frequency region of *second from the bottom*; ⁿBu signals for **5b**, *second from the top*; ⁿBu signals for **5b** and **3b**, and *top*; ⁿBu signals for **4b**.

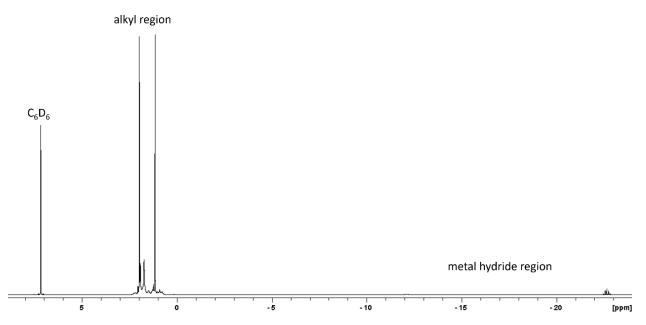

Figure S56. Expanded metal hydride region of the ¹H NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in d₈-toluene (600 MHz, 298 K), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**). Labelled peaks arise from Mn<u>H</u> environments, and * indicates peaks arising from impurities in the reaction mixture.

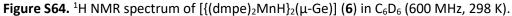

Figure S57. Expanded metal hydride region of the ¹H NMR spectrum of a mixture formed from the reaction of excess H₃Ge^{*n*}Bu with [(dmpe)₂MnH(=GeH^{*n*}Bu)] (**3b**; bottom), [(dmpe)₂MnH(=GePh₂)] (**2a**; middle), or [(dmpe)₂MnH(=GeEt₂)] (**2b**; top) in C₆D₆ at 298 K (bottom; 500 MHz, middle and top; 600 MHz), containing H₃Ge^{*n*}Bu, H₂GePh₂ (middle only) or H₂GeEt₂ (top only), **2a** (middle only), [(dmpe)₂MnH(=GeH^{*n*}Bu)] (**3b**), *mer*-[(dmpe)₂MnH(GeH₂^{*n*}Bu)₂] (**4b**), and *trans*-[(dmpe)₂Mn(GeH₂^{*n*}Bu)(HGeH₂^{*n*}Bu)] (**5b**). Labelled peaks arise from Mn<u>*H*</u> environments.

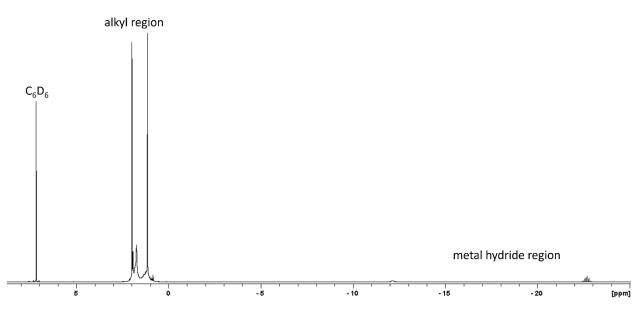

Figure S58. Expanded metal hydride region of variable temperature ¹H NMR spectra of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in *d*₈-toluene (500 MHz), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**). Labelled peaks arise from Mn<u>H</u> environments.

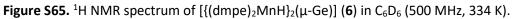

Figure S59. ³¹C{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃Ge^{*n*}Bu in *d*₈-toluene (151 MHz, 298 K), containing H₃Ge^{*n*}Bu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**).

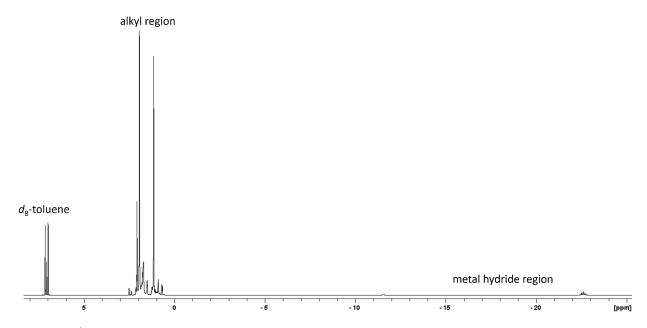

Figure S60. Expanded higher frequency alkyl region of the ${}^{31}C{}^{1}H$ NMR spectrum of a mixture formed from the reaction of [(dmpe)₂MnH(=GeHⁿBu)] (**3b**) and an excess of H₃GeⁿBu in d₈-toluene (151 MHz, 298 K), containing H₃GeⁿBu, [(dmpe)₂MnH(=GeHⁿBu)] (**3b**), mer-[(dmpe)₂MnH(GeH₂ⁿBu)₂] (**4b**), and trans-[(dmpe)₂Mn(GeH₂ⁿBu)(HGeH₂ⁿBu)] (**5b**).

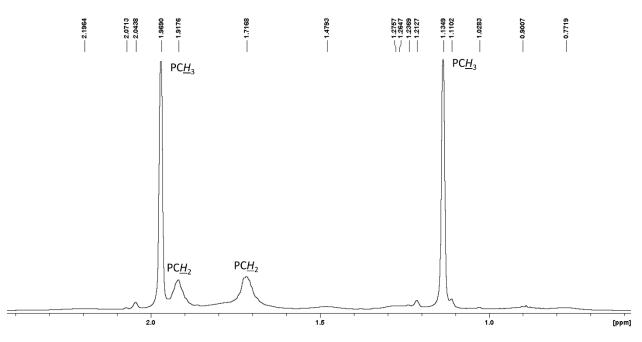

Figure S61. Expanded lower frequency alkyl region of the ${}^{31}C{}^{1}H$ NMR spectrum of a mixture formed from the reaction of [(dmpe)₂MnH(=GeHⁿBu)] (**3b**) and an excess of H₃GeⁿBu in d₈-toluene (151 MHz, 298 K), containing H₃GeⁿBu, [(dmpe)₂MnH(=GeHⁿBu)] (**3b**), mer-[(dmpe)₂MnH(GeH₂ⁿBu)₂] (**4b**), and trans-[(dmpe)₂Mn(GeH₂ⁿBu)(HGeH₂ⁿBu)] (**5b**).

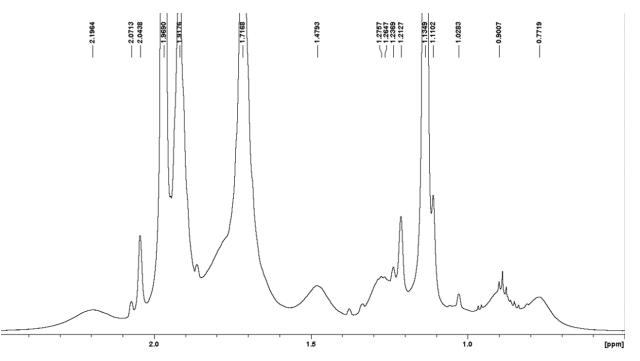


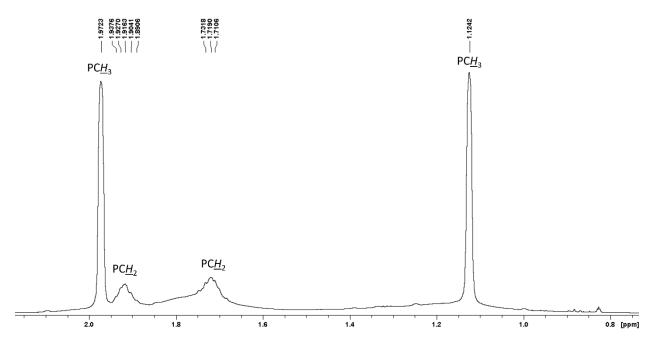

Figure S62. ³¹P{¹H} NMR spectrum of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in *d*₈-toluene (243 MHz, 298 K), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**).




Figure S63. Variable temperature ³¹P{¹H} NMR spectra of a mixture formed from the reaction of $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**) and an excess of H₃GeⁿBu in d₈-toluene (202 MHz), containing H₃GeⁿBu, $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), $mer-[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and $trans-[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**).






Figure S66. ¹H NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in *d*₈-toluene (500 MHz, 189 K).

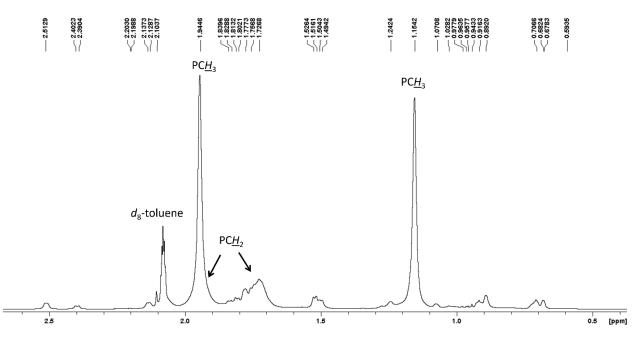
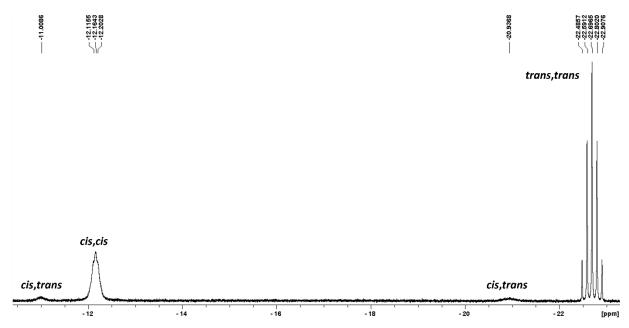
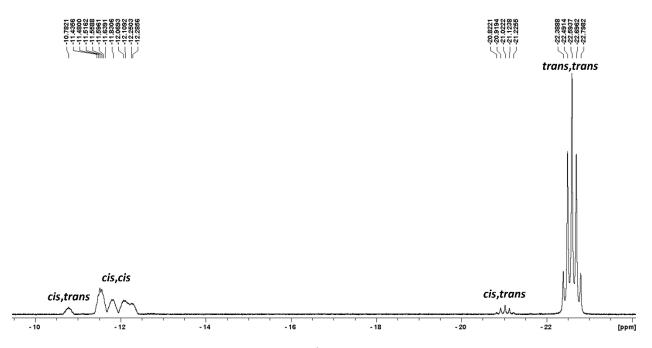
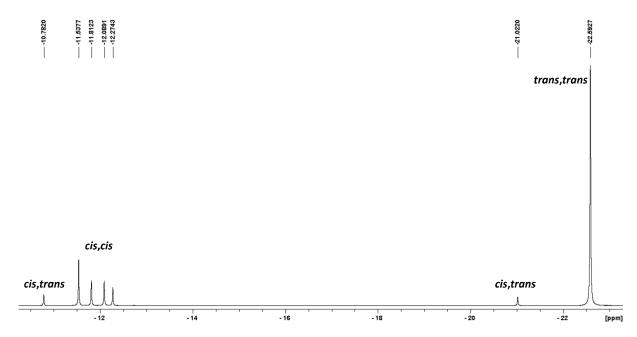
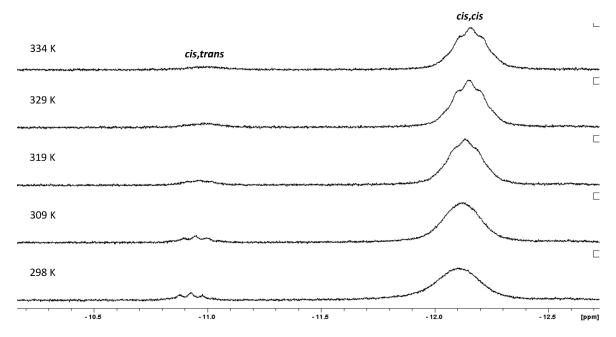

Figure S67. Expanded alkyl region of the ¹H NMR spectrum of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6) in C₆D₆ (600 MHz, 298 K). Labelled peaks arise from the *trans,trans* isomer.

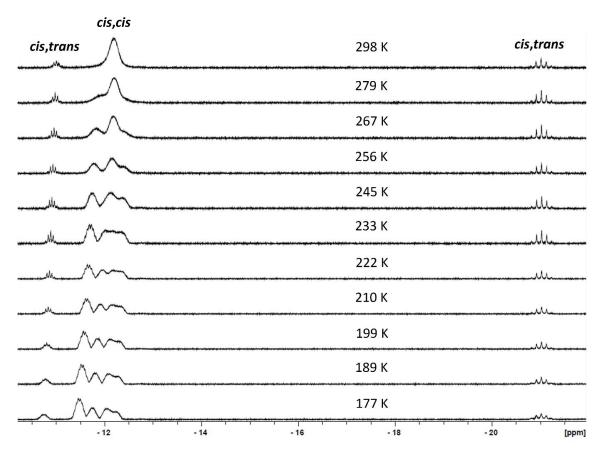
Figure S68. Zoomed-in view of the expanded alkyl region of the ¹H NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in C₆D₆ (600 MHz, 298 K). Cut off peaks arise from the *trans,trans* isomer, and others arise from the *cis,trans* or *cis,cis* isomers.


Figure S69. Expanded alkyl region of the ¹H NMR spectrum of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6) in C₆D₆ (500 MHz, 334 K). Labelled peaks arise from the *trans,trans* isomer.


Figure S70. Expanded alkyl region of the ¹H NMR spectrum of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6) in d_8 -toluene (500 MHz, 189 K). Labelled peaks arise from the *trans,trans* isomer.


Figure S71. Expanded metal hydride region of the ¹H NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in C₆D₆ (600 MHz, 298 K). Labelled peaks arise from Mn<u>H</u> environments.


Figure S72. Expanded metal hydride region of the ¹H NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in C₆D₆ (500 MHz, 334 K). Labelled peaks arise from Mn<u>H</u> environments.


Figure S73. Expanded metal hydride region of the ¹H NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (**6**) in d_8 -toluene (500 MHz, 189 K). Labelled peaks arise from Mn<u>H</u> environments.

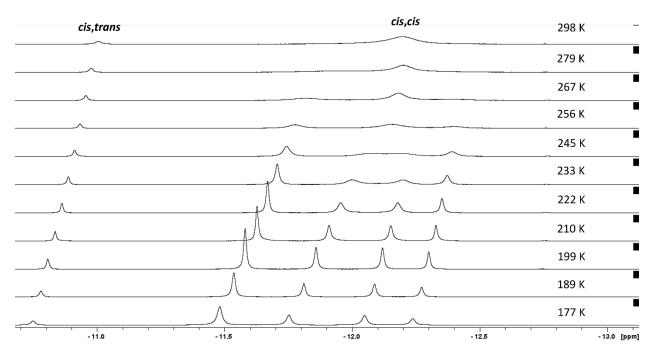
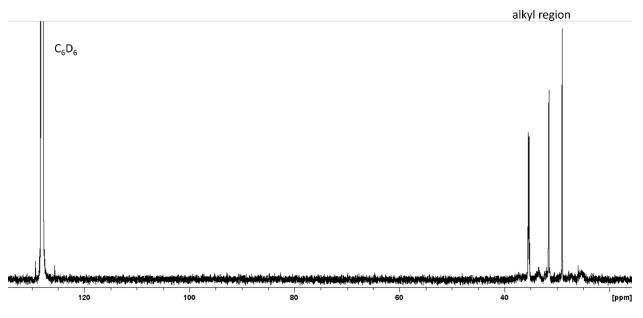
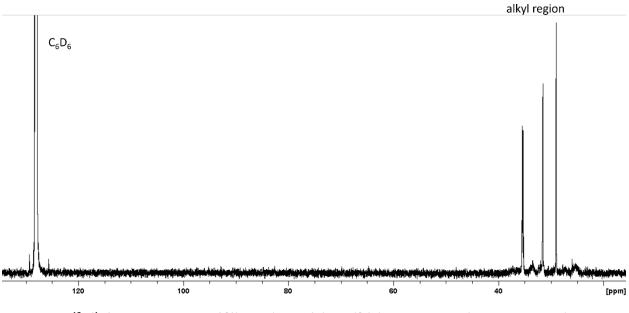
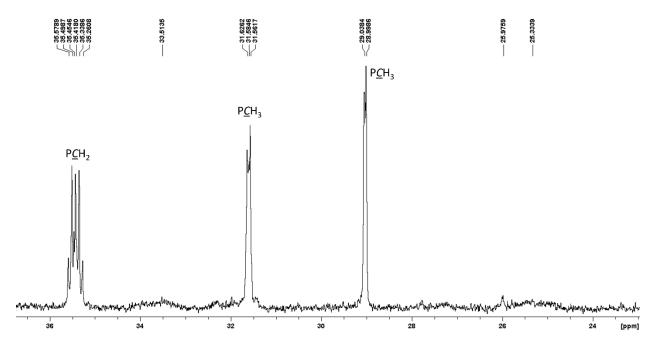
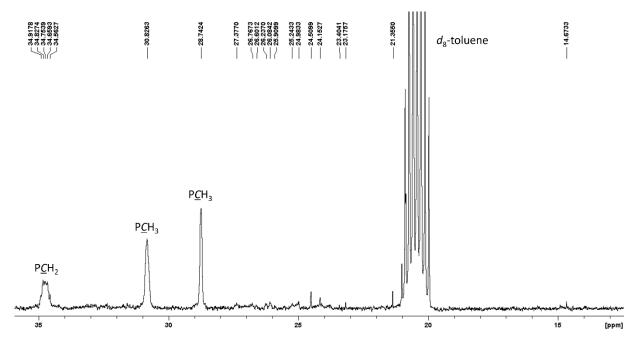

Figure S74. Expanded metal hydride region of the ¹H{³¹P} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in d_8 -toluene (500 MHz, 189 K). Labelled peaks arise from Mn<u>H</u> environments.

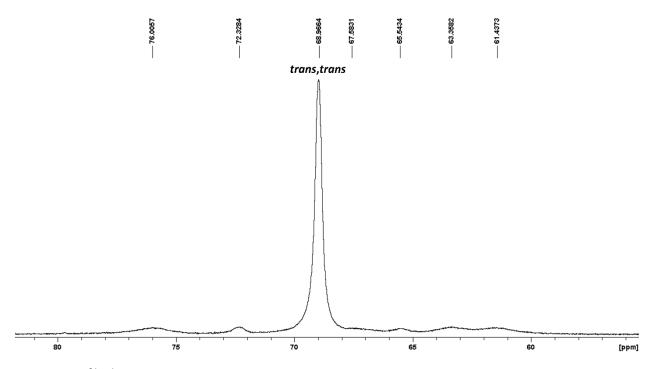
Figure S75. Expanded higher frequency metal hydride region of variable temperature ¹H NMR spectra of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6) in C₆D₆ (500 MHz). Labelled peaks arise from Mn<u>H</u> environments.

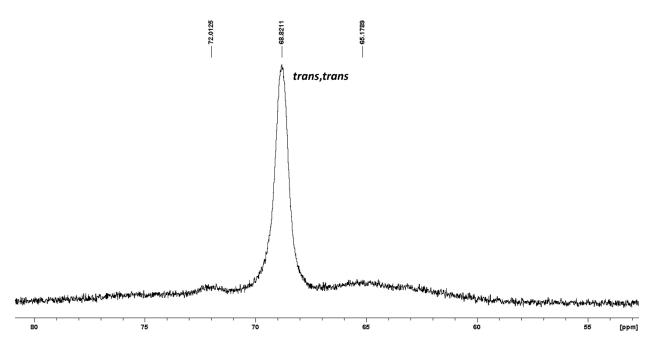
Figure S76. Expanded metal hydride region of variable temperature ¹H NMR spectra of [{(dmpe)₂MnH}₂(μ -Ge)] (**6**) in *d*₈-toluene (500 MHz). Labelled peaks arise from Mn<u>*H*</u> environments.

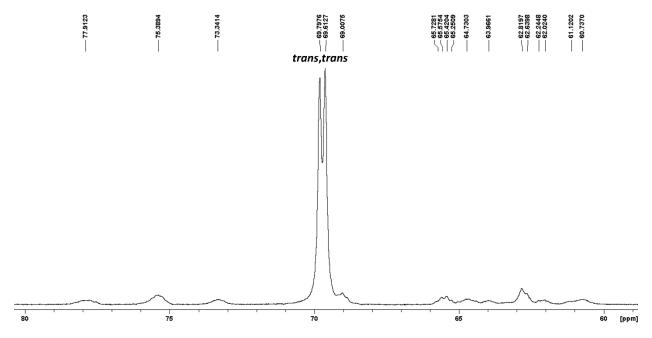
Figure S77. Expanded higher frequency metal hydride region of variable temperature ${}^{1}H{}^{31}P$ NMR spectra of [{(dmpe)_2MnH}_2(\mu-Ge)] (6) in d_{8} -toluene (500 MHz). Labelled peaks arise from Mn<u>H</u> environments.

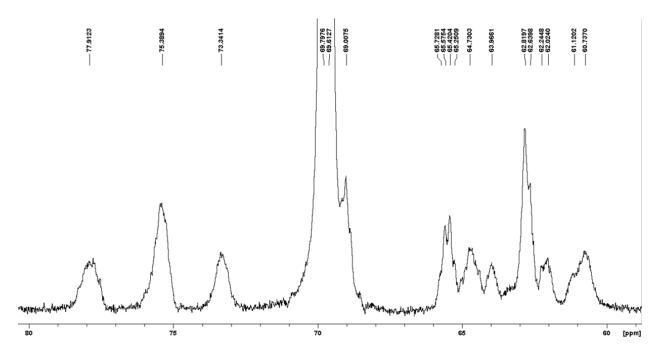




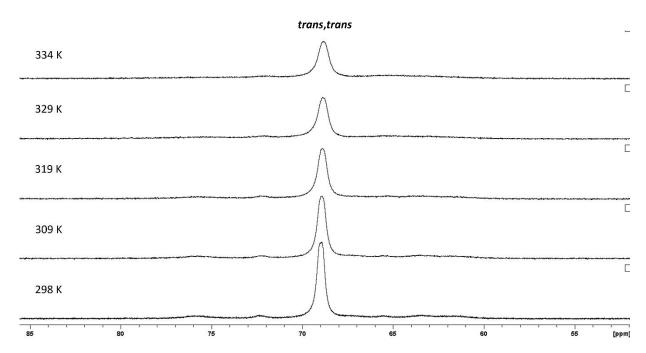

Figure S78. ${}^{13}C{}^{1}H$ NMR spectrum of [{(dmpe)_2MnH}_2(\mu-Ge)] (6) in C₆D₆ (151 MHz, 298 K).


Figure S79. ¹³C{¹H} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in d_8 -toluene (126 MHz, 189 K).


Figure S80. Expanded alkyl region of the ¹³C{¹H} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in C₆D₆ (151 MHz, 298 K). Labelled peaks arise from the *trans,trans* isomer.


Figure S81. Expanded alkyl region of the ${}^{13}C{}^{1}H$ NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (**6**) in d_8 -toluene (126 MHz, 189 K). Labelled peaks arise from the *trans,trans* isomer.


Figure S82. ³¹P{¹H} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in C₆D₆ (243 MHz, 298 K). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers.


Figure S83. ³¹P{¹H} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (**6**) in C₆D₆ (202 MHz, 334 K). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers.

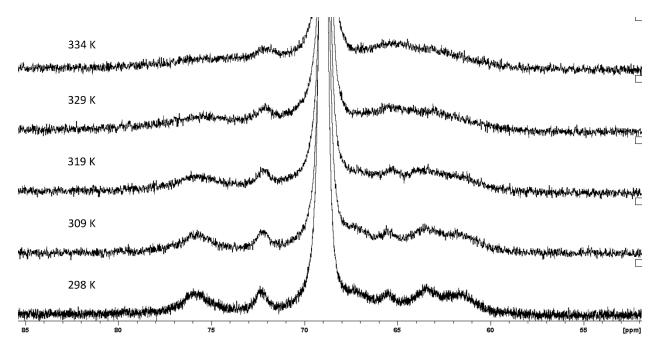
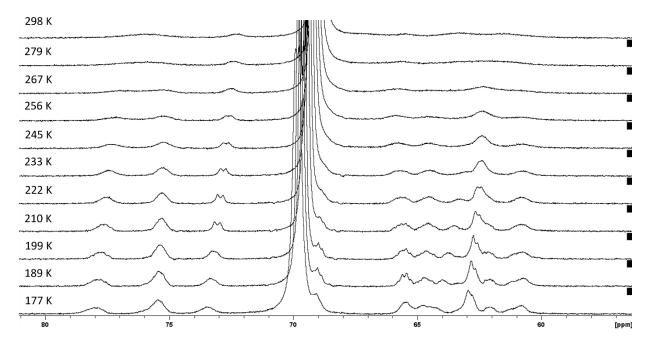
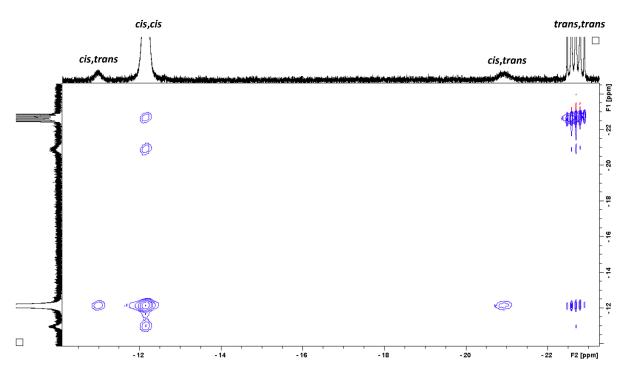

Figure S84. ³¹P{¹H} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (**6**) in *d*₈-toluene (202 MHz, 189 K). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers.

Figure S85. Zoomed-in view of the ³¹P{¹H} NMR spectrum of [{(dmpe)₂MnH}₂(μ -Ge)] (**6**) in *d*₈-toluene (202 MHz, 189 K). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers, while the cut-off peak is from the *trans,trans* isomer.


Figure S86. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in C₆D₆ (202 MHz). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers.


Figure S87. Zoomed-in views of variable temperature ${}^{31}P{}^{1}H$ NMR spectra of [{(dmpe)_2MnH}_2(μ -Ge)] (6) in C₆D₆ (202 MHz). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers, while the cut-off peak is from the *trans,trans* isomer.

298 K		trans,trans			
279 К		~	- 19 W		
267 K					
256 K					
245 K		M			
233 K		M			
222 K		M			
210 K		M			
199 K		M			
189 K		M			
177 К					
80	75	70	65	60	[ppm]

Figure S88. Variable temperature ³¹P{¹H} NMR spectra of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in d_8 -toluene (202 MHz). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers.

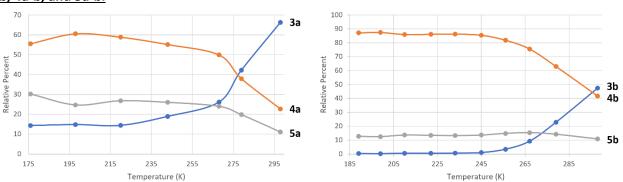
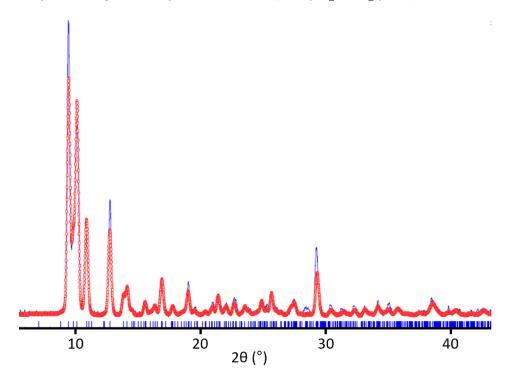
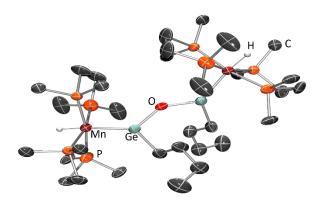


Figure S89. Zoomed-in views of variable temperature ³¹P{¹H} NMR spectra of [{(dmpe)₂MnH}₂(μ -Ge)] (6) in *d*₈-toluene (202 MHz). Unlabelled peaks arise from the *cis,trans* or *cis,cis* isomers, while the cut-off peak is from the *trans,trans* isomer.


Figure S90. Expanded metal hydride region of the NOESY NMR spectrum of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6) in d_8 -toluene (500 MHz, 334 K). To allow visualization of the minor *cis,trans* isomer on the 1D spectra, the 1D spectra on the x- and y- axes have been zoomed in to the extent that peaks arising from the *cis,cis* and *trans,trans* isomers are cut off. Cross-peaks indicate chemical exchange between all four Mn<u>H</u> environments of the three isomers.

<u>Graphs Showing Relative Concentrations of Manganese-containing Species in Mixtures Containing 3a-</u> b, 4a-b, and 5a-b.


Figure S91. Graphs showing relative concentration over temperature of (left) $[(dmpe)_2MnH(GeHPh)]$ (**3a**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), and *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**), or (right) $[(dmpe)_2MnH(GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**), in mixtures generated in *d*₈-toluene by (for the phenyl analogue) exposure of $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**) to 5 equivalents of H₃GePh or (for the butyl analogue) exposure of $[(dmpe)_2MnH(GeH^nBu)]$ (**3b**) to 4 equivalents of H₃GeⁿBu. Blue = **3a-b**, orange = **4a-b**, grey = **5a-b**. Relative concentrations of species in solution were determined by ¹H NMR spectroscopy at 500 MHz.

2D Powder X-ray Diffractogram of Crystal Structure of [{(dmpe)₂MnH}₂(μ-Ge)] (6)

Figure S92. Overlay of (blue) the 2D power X-ray diffractogram of the isolated sample of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (**6**) and (red) the theoretical diffractogram calculated form the single crystal X-ray structure of *trans,trans*-[{(dmpe)_2MnH}_2(\mu-Ge)] (*trans,trans-6*), indicating that the bulk sample of **6** exists exclusively as the *trans,trans* isomer in the solid state. $\lambda = 1.54056$ Å, T = 298 K.

Figure of X-ray Crystal Structure of [O{"BuGe=MnH(dmpe)₂}₂] (7).

Figure S93. X-ray crystal structure of $[O{^nBuGe=MnH(dmpe)_2}_2]$ (7), with ellipsoids at 50 % probability. Most hydrogen atoms have been omitted for clarity. Hydrogen atoms on Mn were located from the difference map and refined isotropically.

Tables of X-ray Crystal Data and Crystal Structure Refinement.

dentification code	MnHGePh2
Empirical formula	C ₂₄ H ₄₃ GeMnP ₄
Formula weight	582.99
Temperature/K	100
Crystal system	monoclinic
Space group	P21/c
a/Å	15.9001(17)
b/Å	14.3514(16)
c/Å	12.5626(12)
α/°	90
β/°	103.094(4)
γ/°	90
Volume/Å ³	2792.1(5)
Z	4
$\rho_{calc}g/cm^3$	1.387
μ/mm^{-1}	1.768
F(000)	1216.0
Crystal size/mm ³	0.3 imes 0.3 imes 0.15
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/	° 3.87 to 59.022
Index ranges	$-21 \le h \le 21, -19 \le k \le 19, -17 \le l \le 17$
Reflections collected	32261
Independent reflections	7772 [$R_{int} = 0.0334$, $R_{sigma} = 0.0499$]
Data/restraints/parameters	7772/0/283
Goodness-of-fit on F ²	1.045
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0247, wR_2 = 0.0643$
Final R indexes [all data]	$R_1 = 0.0302, wR_2 = 0.0664$
Largest diff. peak/hole / e Å ⁻	³ 0.95/-0.46

 Table S1. Crystal and structure refinement data for [(dmpe)₂MnH(=GePh₂)] (2a).

Table S2. Crystal and structure refinement data for [(dmpe)₂MnH(=GeHPh)] (3a).

Identification code	MnHGeHPh
Empirical formula	$C_{18}H_{39}GeMnP_4$
Formula weight	506.90
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_{1}/n$
a/Å	8.9471(17)
b/Å	16.251(8)
c/Å	16.702(4)
α/\circ	90
β/°	96.35(2)
γ/°	90
Volume/Å ³	2413.6(14)
Z	4
$\rho_{calc}g/cm^3$	1.395
μ/mm^{-1}	2.034
F(000)	1056.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.15
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/ ^c	^o 3.508 to 59.228
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}22 \leq k \leq 22, \text{-}23 \leq l \leq 20$
Reflections collected	28443
Independent reflections	$6780 [R_{int} = 0.0488, R_{sigma} = 0.0595]$
Data/restraints/parameters	6780/0/233
Goodness-of-fit on F ²	1.024
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0301, wR_2 = 0.0705$
Final R indexes [all data]	$R_1 = 0.0438, wR_2 = 0.0741$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.73

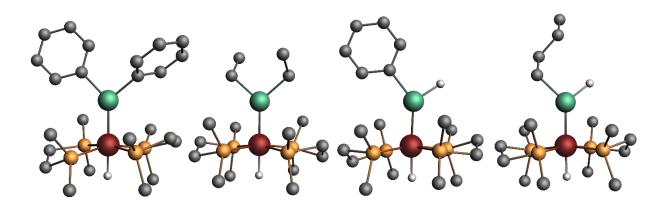
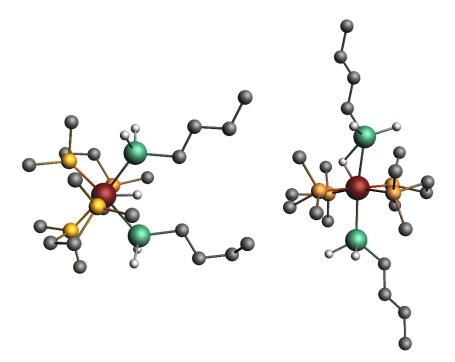

Identification code	Mn2Ge
Empirical formula	$C_{24}H_{66}GeMn_2P_8$
Formula weight	784.99
Temperature/K	100.00
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	17.673(2)
b/Å	17.979(7)
c/Å	11.970(3)
α/\circ	90
β/°	101.283(18)
γ/°	90
Volume/Å ³	3729.7(18)
Z	4
$\rho_{calc}g/cm^3$	1.398
μ/mm^{-1}	1.825
F(000)	1648.0
Crystal size/mm ³	0.4 imes 0.4 imes 0.25
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/	° 3.264 to 59.126
Index ranges	$-24 \le h \le 22, -24 \le k \le 24, -16 \le l \le 16$
Reflections collected	46413
Independent reflections	10386 [$R_{int} = 0.0346$, $R_{sigma} = 0.0386$]
Data/restraints/parameters	10386/0/341
Goodness-of-fit on F ²	1.185
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0321, wR_2 = 0.0732$
Final R indexes [all data]	$R_1 = 0.0397, wR_2 = 0.0751$
Largest diff. peak/hole / e Å	³ 0.46/-0.51

Table S3. Crystal and structure refinement data for *trans,trans*-[{(dmpe)₂MnH}₂(µ-Ge)] (*trans,trans*-6).


Table S4. Crystal and structure refinement data for $[O{^nBuGe=MnH(dmpe)_2}_2]$ (7).

Identification code	MnGenBuO
Empirical formula	$C_{32}H_{84}Ge_2Mn_2OP_8$
Formula weight	987.81
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	C2
a/Å	26.777(18)
b/Å	9.568(3)
c/Å	9.796(5)
α/°	90
β/°	109.100(10)
γ/°	90
Volume/Å ³	2372(2)
Z	2
$\rho_{calc}g/cm^3$	1.383
μ/mm^{-1}	2.069
F(000)	1036.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	° 4.4 to 59.09
Index ranges	$-37 \le h \le 37, -13 \le k \le 13, -13 \le l \le 13$
Reflections collected	6567
Independent reflections	6567 [$R_{int} = ?, R_{sigma} = 0.1121$]
Data/restraints/parameters	6567/157/216
Goodness-of-fit on F ²	0.950
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0604, wR_2 = 0.1473$
Final R indexes [all data]	$R_1 = 0.1031, wR_2 = 0.1562$
Largest diff. peak/hole / e Å-	³ 1.22/-0.56
Flack parameter	0.17(2)

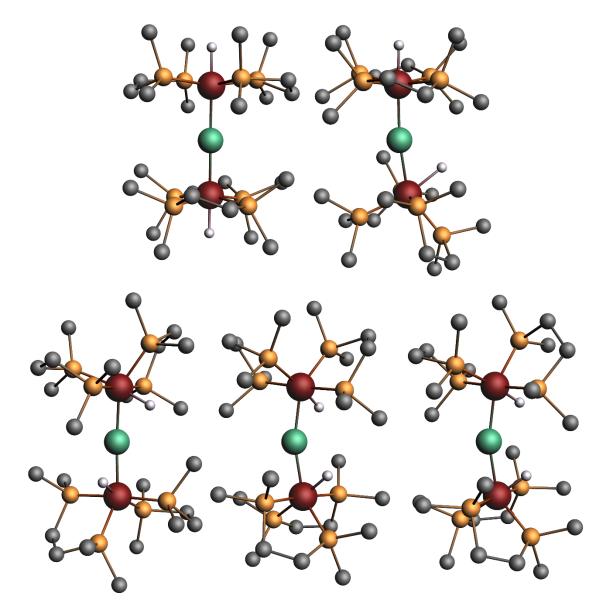

Figures Showing DFT Calculated Structures of 2a-b, 3a-b, 4b, 5b, and 6.

Figure S94. DFT-calculated structures of germylene complexes; $[(dmpe)_2MnH(=GePh_2)]$ (**2a**; left), $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**; second from left), $[(dmpe)_2MnH(=GeHPh)]$ (**3a**; second from right), and $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**; right). Most hydrogen atoms (those not on Mn or Ge) are not shown for clarity. Atom colours; Mn = red, Ge = green, P = orange, C = dark grey, H = light grey.

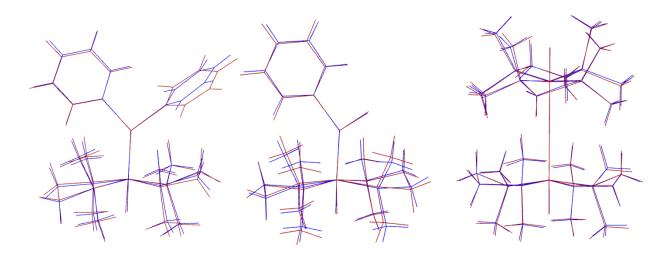


Figure S95. DFT-calculated structures of for digermyl hydride complexes; $mer-[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**; left) and $trans-[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**; right). Most hydrogen atoms (those not on Mn or Ge) are not shown for clarity. Atom colours; Mn = red, Ge = green, P = orange, C = dark grey, H = light grey.

Figure S96. DFT-calculated structures of the isomers of the germanide complex [{(dmpe)₂MnH}₂(μ -Ge)] (6). Top; these are the lowest energy rotamers for the (top left) *trans,trans-* and (top right) *cis,trans-* isomers. Bottom; three structures of the *cis,cis* isomer with nearly identical energies corresponding to (bottom left) the *rac* isomer, (bottom middle) the lowest energy *meso* rotamer, and (bottom right) the second lowest energy *meso* rotamer. Most hydrogen atoms (those not on Mn) are not shown for clarity. Atom colours; Mn = red, Ge = green, P = orange, C = dark grey, H = light grey.

Figures Showing Superimposed Calculated and X-ray Structures of 2a, 3a, and trans, trans-6.

Figure S97. Superimposed DFT-calculated (red) and X-ray (blue) structure of, from left to right, $[(dmpe)_2MnH(=GePh_2)]$ (**2a**), $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), and *trans,trans-*[{(dmpe)_2MnH}₂(µ-Ge)] (*trans,trans-6*).

<u>Tables of DFT-calculated Bond Metrics, Mayer Bond Orders, and Hirshfeld Charges for 2a-b, 3a-b, 4a-b, 5a-b, and 6.</u>

Table S5. Selected calculated and crystallographically determined bond lengths (Å) and Mayer bond orders (b.o.) for germylene complexes; [(dmpe)₂MnH(=GePh₂)] (**2a**), [(dmpe)₂MnH(=GeEt₂)] (**2b**), [(dmpe)₂MnH(=GeHPh)] (**3a**), and [(dmpe)₂MnH(=GeHⁿBu)] (**3b**).

		2a	2b	3a	3b
Mn–Ge	d(XRD)	2.2636(4)	-	2.2462(6)	-
	d(DFT)	2.25	2.25	2.24	2.24
	Mayer b.o.	1.40	1.41	1.41	1.44
Mn–H	d(XRD)	1.50(2)	-	1.54(2)	-
	d(DFT)	1.57	1.58	1.58	1.58
	Mayer b.o.	0.81	0.83	0.82	0.83
Ge–H	d(XRD)	-	-	1.54(3)	-
	d(DFT)	_	-	1.6051	1.6044
	Mayer b.o.	_	-	0.83	0.84

Table S6. Selected calculated bond lengths (Å) and Mayer bond orders (b.o.) for digermyl hydride complexes; mer-[(dmpe)₂MnH(GeH₂Ph)₂] (**4a**), mer-[(dmpe)₂MnH(GeH₂ⁿBu)₂] (**4b**), trans-[(dmpe)₂Mn(GeH₂Ph)(HGeH₂Ph)] (**5a**), and trans-[(dmpe)₂Mn(GeH₂ⁿBu)(HGeH₂ⁿBu)] (**5b**).

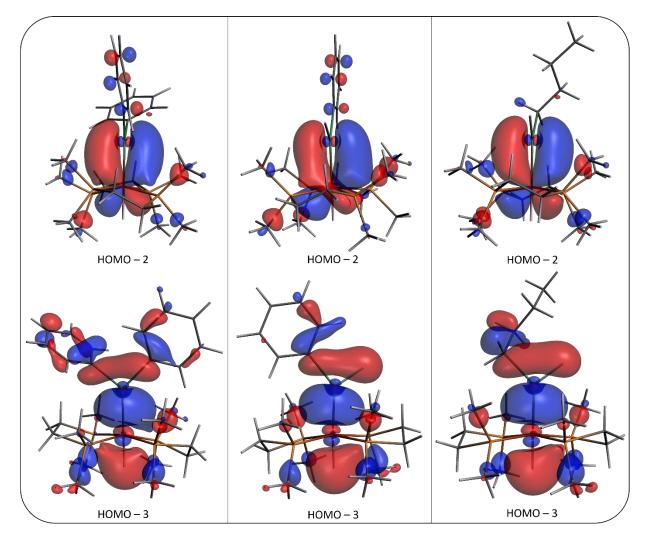
		4a	4b	5a	5b
Mn–Ge _{HGeH2R}	d	-	-	2.49	2.49
WIII-Gehgeh2R'	b.o.	-	-	0.70	0.74
Ma Co	d	2.48	2.48, 2.49	2.49	2.48
Mn–Ge _{GeH2R}	b.o.	0.79	0.80, 0.81	0.83	0.78
Mn–H	d	1.56	1.55	1.55	1.54
	b.o.	0.57	0.60	0.60	0.65
	d	1.96	1.94, 1.95	1.91	1.91
Ge–H _{HGeH2R'}	b.o.	0.2065, 0.2067	0.1901, 0.1950	0.2745	0.2368
	d	1.57	1.57	1.56, 1.57	1.56, 1.57
Ge–H _{term}	b.o.	0.87	0.86, 0.88	0.85, 0.86, 0.90, 0.91	0.86, 0.87, 0.89

		trans,trans	cis,trans	<i>cis,cis</i> (rac)	<i>cis,cis</i> (meso); lowest energy rotamer	<i>cis,cis</i> (meso); higher energy rotamer
HMnMr	nH torsion	-	—	83.8	101.9	73.7
	d(XRD)	2.2806(7), 2.2817(7)	-	-	-	-
Mn–Ge	d(DFT)	2.26	2.25 (trans), 2.27 (cis)	2.23	2.24	2.23, 2.24
	Mayer b.o.	1.38	1.25 (trans), 1.36 (cis)	1.30	1.26	1.23, 1.30
	d(XRD)	1.53(3), 1.58(3)	_	-	_	-
Mn–H	d(DFT)	1.57	1.58 (trans), 1.78 (cis)	1.59	1.59, 1.60	1.59
	Mayer b.o.	0.98	0.92 (trans), 0.69 (cis)	0.81	0.72, 0.76	0.75, 0.81
	d(DFT)	_	2.10	2.20, 2.21	2.13, 2.14	2.08, 2.26
Ge–H (<i>cis</i>)	Mayer b.o.	-	0.23	0.11	0.17, 0.20	0.11, 0.18

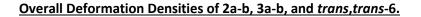
Table S7. Selected calculated and crystallographically determined bond lengths (Å) and Mayer bond orders (b.o.) for the various isomers of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6).

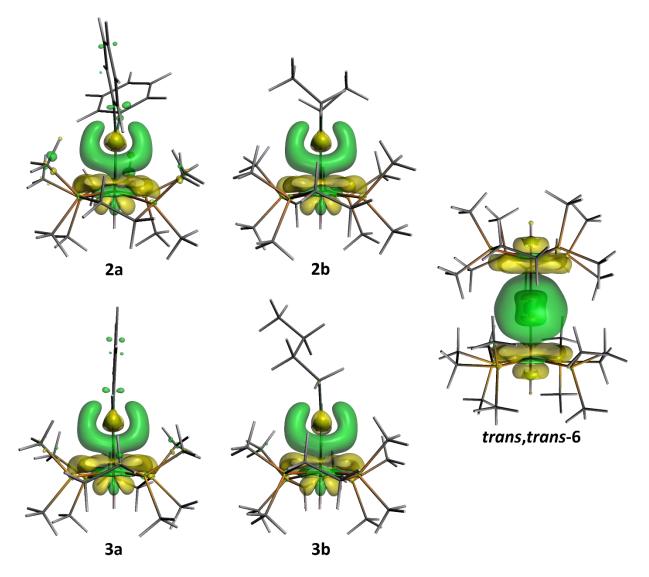
Table S8. Selected Hirshfeld charges for germylene complexes $[(dmpe)_2MnH(=GePh_2)]$ (2a), $[(dmpe)_2MnH(=GeEt_2)]$ (2b), $[(dmpe)_2MnH(=GeHPh)]$ (3a), and $[(dmpe)_2MnH(=GeH^nBu)]$ (3b), as well as digermyl hydride complexes; *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (4a), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (4b), *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (5a), and *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (5b).

	2a	2b	3a	3b	4a	4b	5a	5b
Ge	0.21	0.23	0.17	0.19	0.20	0.20	0.20 (HGeR₃),	0.20 (HGeR₃),
Ge	0.21	0.25	0.17	0.19	0.20	0.20	0.15 (GeR₃)	0.15 (GeR₃)
Mn	-0.26	-0.26	-0.26	-0.26	-0.25	-0.25	-0.24	-0.24
Mn <i>H</i>	-0.10	-0.11	-0.11	-0.11	-0.06	-0.06	-0.06	-0.06
Call			0.11	0.11	-0.08,	0.00	–0.08 (HGeR₃),	–0.08, –0.09 (HGeR ₃),
Ge <i>H</i>	_	_	-0.11	-0.11	-0.09	-0.09	–0.09 (GeR ₃)	–0.09, –0.10 (GeR ₃)

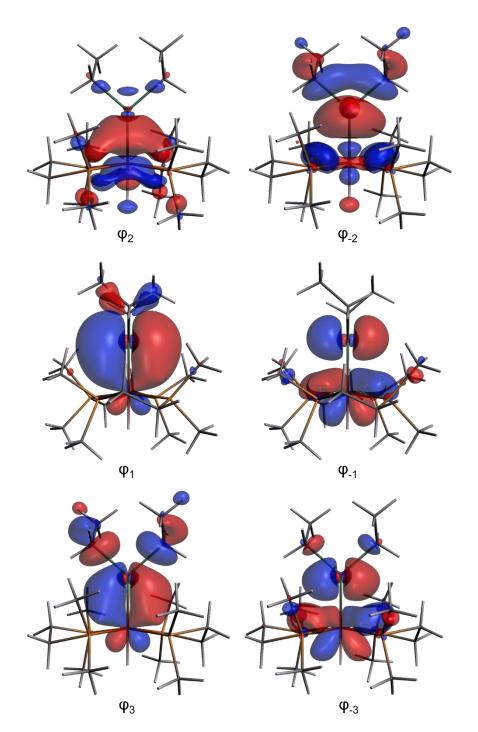

Table S9. Selected Hirshfeld charges for the various isomers of $[{(dmpe)_2MnH}_2(\mu-Ge)]$ (6).

	trans trans	cic trans	cis,cis	<i>cis,cis</i> (meso); lowest	<i>cis,cis</i> (meso); higher
	trans,trans	cis,trans	(rac)	energy rotamer	energy rotamer
Ge	0.06	0.10	0.14	0.13	0.14
Mn	-0.27	-0.27	-0.27	-0.27	-0.27, -0.28
Mn <i>H</i>	-0.10	–0.11 (trans), –0.09 (cis)	-0.09	-0.09	-0.09, -0.10


Table S10. Fragment Hirshfeld charges for the Ge-containing fragment from fragment interaction calculations {GeR₂ + (dmpe)₂MnH or Ge + 2 × (dmpe)₂MnH)} on [(dmpe)₂MnH(=GePh₂)] (**2a**), [(dmpe)₂MnH(=GeEt₂)] (**2b**), [(dmpe)₂MnH(=GeHPh)] (**3a**), [(dmpe)₂MnH(=GeHⁿBu)] (**3b**), and *trans*,*trans*-[{(dmpe)₂MnH}₂(μ -Ge)] (*trans*,*trans*-6).


GePh ₂ (2a)	GeEt ₂ (2b)	GeHPh (3a)	GeH ["] Bu (3b)	Ge (<i>trans,trans-</i> 6)
-0.32	-0.26	-0.31	-0.29	-0.55

Slater-type Molecular Orbitals Involved in Mn–Ge Bonding in 2a and 3a-b.


Figure S98. Slater-type σ (bottom) and π (top) molecular orbitals involved in Mn–Ge bonding in [(dmpe)₂MnH(=GePh₂)] (**2b**; left), [(dmpe)₂MnH(=GeHPh)] (**3a**; middle), and [(dmpe)₂MnH(=GeHⁿBu)] (**3b**; right), with isosurfaces set to 0.03.

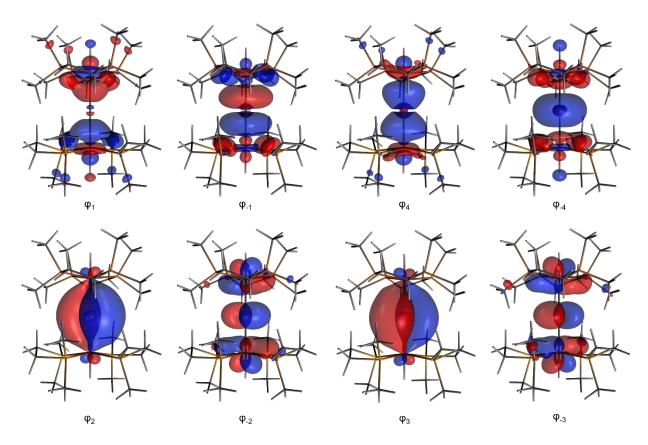
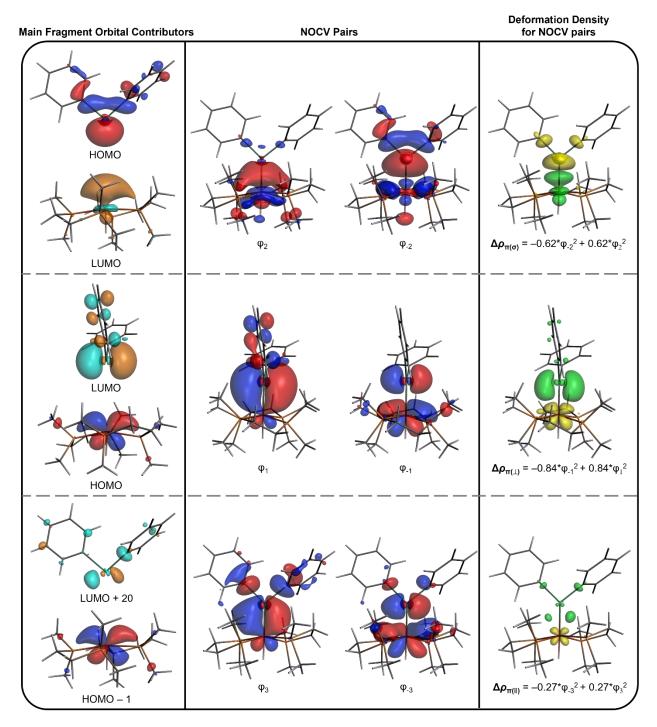
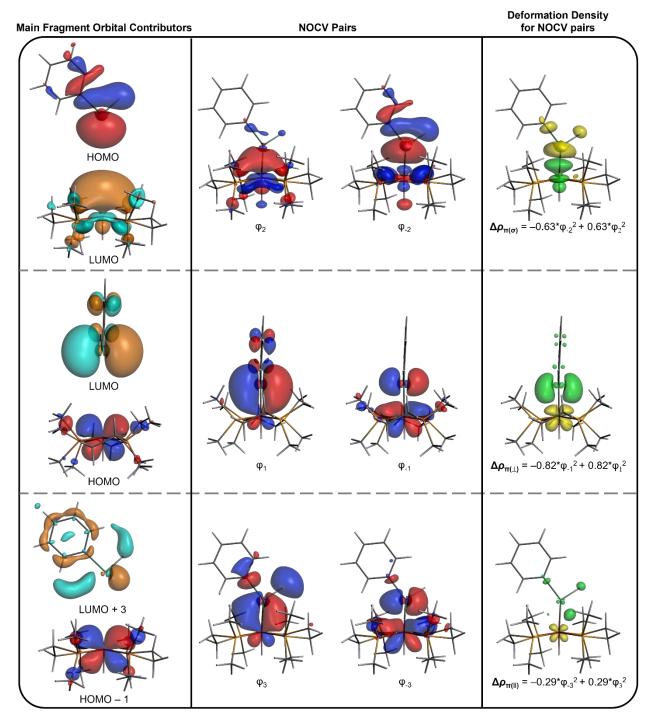
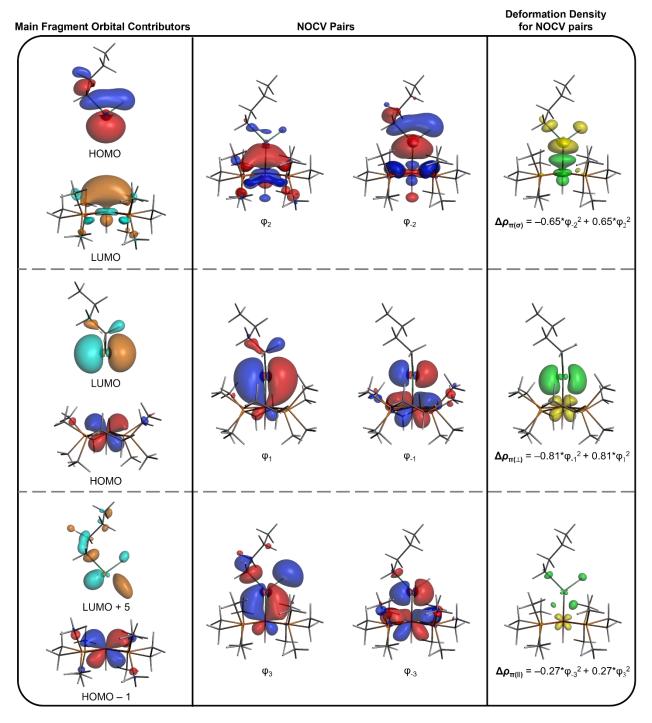


Figure S99. SCF deformation density isosurfaces from interaction calculations using neutral [(dmpe)₂MnH] and either germylene or Ge fragments for [(dmpe)₂MnH(=GePh₂)] (**2a**), [(dmpe)₂MnH(=GeEt₂)] (**2b**), [(dmpe)₂MnH(=GeHPh)] (**3a**), [(dmpe)₂MnH(=GeH"Bu)] (**3b**), and *trans,trans*-[{(dmpe)₂MnH₂(μ -Ge)] (*trans,trans*-6), with isosurfaces set to 0.003. Increased (green) and decreased (yellow) electron density is presented relative to the fragments.


<u>Selected ETS-NOCV Deformation Densities, NOCV Orbitals, and Fragment Orbital Contributors for 2a-b,</u> <u>3a-b, and *trans*,*trans*-6.</u>


Figure S100. ETS-NOCV NOCV orbitals from interaction calculation using neutral [(dmpe)₂MnH] and GeEt₂ fragments for [(dmpe)₂MnH(=GeEt₂)] (**2b**), with isosurfaces set to 0.03. Associated deformation density contributions and main fragment orbitals can be found in Figure 7 (left).


Figure S101. ETS-NOCV NOCV orbitals from interaction calculation using neutral [(dmpe)₂MnH] and Ge fragments for *trans,trans-*[{(dmpe)₂MnH}₂(μ -Ge)] (*trans,trans-*6), with isosurfaces set to 0.03. Associated deformation density contributions and main fragment orbitals can be found in Figure 7 (right).

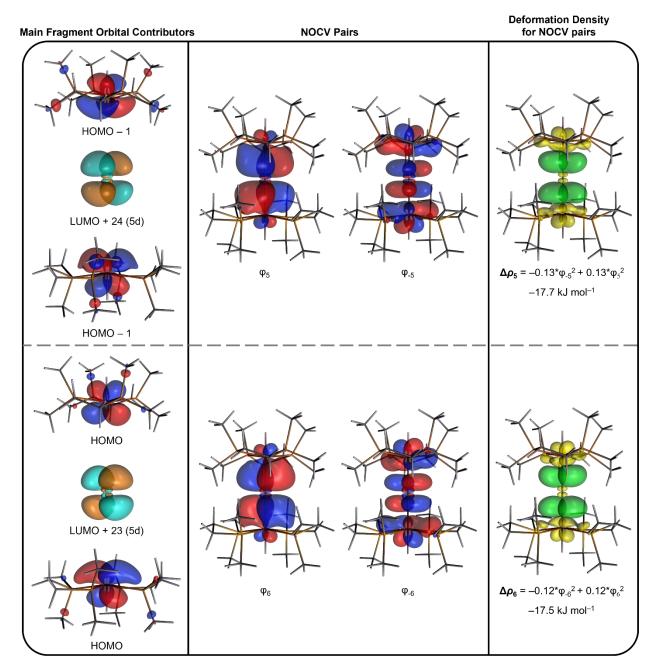

Figure S102. ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂MnH] and GePh₂ fragments for [(dmpe)₂MnH(=GePh₂)] (**2a**), with isosurfaces set to 0.05, 0.03, and 0.003, respectively. Increased (green) and decreased (yellow) electron density is presented relative to the fragments.

Figure S103. ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂MnH] and GeHPh fragments for [(dmpe)₂MnH(=GeHPh)] (**3a**), with isosurfaces set to 0.03, 0.03, and 0.003, respectively. Increased (green) and decreased (yellow) electron density is presented relative to the fragments.

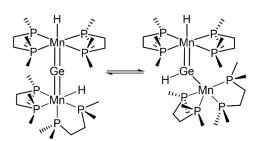


Figure S104. ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) from interaction calculation using neutral [(dmpe)₂MnH] and GeHⁿBu fragments for [(dmpe)₂MnH(=GeHⁿBu)] (**3b**), with isosurfaces set to 0.04, 0.03, and 0.003, respectively. Increased (green) and decreased (yellow) electron density is presented relative to the fragments.

Figure S105. ETS-NOCV main fragment orbital contributors (left), NOCV orbitals (middle), and deformation densities (right) associated with polarization functions which enhance the Ge–Mn π backdonation interactions, from interaction calculation using neutral [(dmpe)₂MnH] and Ge fragments for *trans,trans*-[{(dmpe)₂MnH}₂(µ-Ge)] (*trans,trans-6*), with isosurfaces set to 0.04, 0.03, and 0.003, respectively. Increased (green) and decreased (yellow) electron density is presented relative to the fragments. For the other four contributions to Mn–Ge–Mn bonding in *trans,trans-6*, the ETS-NOCV main fragment orbital contributors and deformation densities can be found in Figure 7 (right), and the NOCV orbitals can be found in Figure S101.

Miscellaneous

Scheme S1. Postulated reversible 1,1-insertion process for *cis,trans*-[{(dmpe)₂MnH}₂(μ -Ge)] (*cis,trans*-6) to afford a fluxional 5-coordinate manganese centre, which could render all environments on the *cis*-[(dmpe)₂MnH] fragment equivalent on the NMR timescale, without causing *cis-trans* isomerization at manganese.

Table S11. Selected room temperature ¹H and ³¹P NMR chemical shifts (ppm, C₆D₆ unless otherwise noted) for $[(dmpe)_2MnH(=GePh_2)]$ (**2a**), $[(dmpe)_2MnH(=GeEt_2)]$ (**2b**), $[(dmpe)_2MnH(=GeHPh)]$ (**3a**), $[(dmpe)_2MnH(=GeH^nBu)]$ (**3b**), *mer*- $[(dmpe)_2MnH(GeH_2Ph)_2]$ (**4a**), *mer*- $[(dmpe)_2MnH(GeH_2^nBu)_2]$ (**4b**), *trans*- $[(dmpe)_2Mn(GeH_2Ph)(HGeH_2Ph)]$ (**5a**), *trans*- $[(dmpe)_2Mn(GeH_2^nBu)(HGeH_2^nBu)]$ (**5b**), and the various isomers of $[\{(dmpe)_2MnH_2(\mu-Ge)\}$ (**6**).

Complex	¹ H NMR (Mn <i>H</i>) ^a	¹ H NMR (Ge <i>H</i>)	³¹ P NMR
2a	-10.02	-	79.67
2b	-10.79	-	79.90
3a	-9.18	12.68	78.64
3b	-9.82	12.38	78.55
4a	-11.37	4.94, 4.93	67.89, 62.05
4b ^b	-10.41	4.09, 3.87	71.88, 59.44
5a	-11.96	4.72	64.93
5b ^b	-12.01	3.71	68.03
trans,trans-6	-22.67	-	68.97
cis,trans-6	-10.93, -20.96	_	_
cis,cis-6	-12.13	_	_

a This column includes hydrogen environments bridging between Mn and Ge.

b These spectra were obtained in d^8 -toluene.