Supplementary Information for
 Multiply Engaged Molecular Gear composed of Cerium (IV) DoubleDecker of a triptycene-functionalized Porphyrin

Toshio Nishino, * ${ }^{[a]}$ Masafumi Fukumura, ${ }^{[a]}$, Shohei Katao, ${ }^{[a]}$ Kazuma Yasuhara, ${ }^{[a, b]}$ and Gwénaël Rapenne*[a,c]

${ }^{[a]}$ Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan.
${ }^{[b]}$ Centre of Digital Green-Innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan.
${ }^{[c]}$ CEMES, Université de Toulouse, CNRS, 29, rue Jeanne Marvig, 31055 Toulouse, France.
*E-mail: gwenael-rapenne@ms.naist.jp

Page S2: General Information

Page S3-S11
Page S12
Page S13
Page S14
Page S15
Page S16-S24
Page S25
Page S26
Page S27-S28
Page S29

Synthesis of compounds
MALDI-TOF MS spectrum of $\mathrm{Ce}(\mathrm{L})_{2}$ and $\mathrm{Ce}(3)_{2}$ (Figure S1)
Full assignment of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathrm{Ce}(\mathrm{L})_{2}$ (Figure S2)
VT ${ }^{1} \mathrm{H}$-NMR spectra of $\mathrm{Ce}(\mathrm{L})_{2}$ (Figure S3)
VT ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathrm{Ce}(3)_{2}$ (Figure S4)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds (Figure $\mathbf{S 5}-\mathrm{S} 13$)
COSY spectrum of $\mathrm{Ce}(\mathrm{L})_{2}$ (Figure S14)
NOESY spectrum of $\mathrm{Ce}(\mathrm{L})_{2}$ (Figure S15)
X-ray crystallography of $\mathrm{Ce}(\mathrm{L})_{2}$ (Table S1 and Figure S16)
References

General informations

Synthetic procedures were carried out under dry nitrogen atmosphere, unless otherwise specified. All reagents and solvents were purchased at the highest commercial quality available and used without further purification, unless otherwise stated. Trifluoroacetic acid, chloroform, copper iodide, methanol, N-bromosuccinimide, and zinc acetate dihydrate were purchased from FUJIFILM Wako Pure Chemical Corporation. Tris(acetylacetonato)cerium hydrate was purchased from Aldrich. Dichloromethane, 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), anhydrous tetrahydrofuran and triethylamine were purchased from Nacalaitesque. Pyrrole and bis(triphenylphosphine) palladium(II)dichloride were purchased from TCI. 9-Ethynyltriptycene,, ${ }^{[1]}$ Dipyrromethanes, ${ }^{[2]}$ and 3,5 -dibutoxybenzaldehyde ${ }^{[3]}$ were prepared according to the literature procedures. The complexation reaction of a porphyrin with zinc ion and cerium ion under microwave irradiation was carried out by utilizing CEM Discover SP in a glass pressure tube equipped with PTFE-coated magnetic stirring bar. ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ spectra were recorded on a JEOL JNM-ECA600 (600 MHz for ${ }^{1} \mathrm{H}$; 150 MHz for ${ }^{13} \mathrm{C}$) spectrometer or a JEOL JNM-ECX400P (400 MHz for ${ }^{1} \mathrm{H}$; 100 MHz for ${ }^{13} \mathrm{C}$) spectrometer at a constant temperature of 298 K. Tetramethylsilane (TMS) was used as an internal reference for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements in CDCl_{3}, DMSO- d_{6}, and toluene- d_{8}. Chemical shifts (δ) are reported in ppm. Coupling constants (J) are given in Hz and the following abbreviations have been used to describe the signals: singlet (s); broad singlet (br. s); doublet (d); triplet (t); quadruplet (q); quintuplet (quint); multiplet (m). Full assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were made with the assistance of COSY, NOESY, HMBC, and HSQC spectra when necessary. The MALDI-TOF mass spectrometry was performed using JEOL JMSS300 spectrometer. Silica gel column chromatography and thin-layer (TLC) chromatography were performed using Wakosil ${ }^{\circledR} 60$ and Merck silica gel 60 (F254) TLC plates, respectively.

Synthesis of porphyrin $\mathrm{H}_{2} \mathbf{1}$

This reaction was performed under N_{2} atmosphere and all the reaction vessels were dried up. 3,5-Dibutoxybenzaldehyde ($2.51 \mathrm{~g}, 10 \mathrm{mmol}$) and dipyrromethene ($1.48 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1000 \mathrm{~mL})$ and the reaction vessels were protected from light by covering with aluminum foil. The resulting solution was deoxygenated by bubbling N_{2} for 20 min . TFA ($1.4 \mathrm{~mL}, 18 \mathrm{mmol}$) was added to the solution and the reaction mixture was stirred at room temperature for 30 min . Then, $\mathrm{DDQ}(3.41 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.4$ $\mathrm{mL}, 20 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for an additional period of 30 min and then, silica gel $(60 \mathrm{~mL})$ was added. The resulting mixture was evaporated and the crude compound was purified by silica gel column chromatography ($6 \phi \times 16 \mathrm{~cm}$, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 7$) to afford crude purple solid, which was further purified by washing with acetone to afford $\mathrm{H}_{2} \mathbf{1}$ as a purple solid ($1.55 \mathrm{~g}, 41 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=10.30(\mathrm{~s}, 2 \mathrm{H}), 9.38(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 9.19(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=6.6 . \mathrm{Hz}, 8 \mathrm{H})$, $1.88(\mathrm{tt}, J=7.1,7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.57\left(\mathrm{tq}, J=7.5,7.5 \mathrm{~Hz}, 9 \mathrm{H}\right.$, including $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.01(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 12 \mathrm{H})-3,16(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.6,146.9,145.2,143.1,131.5,131.1,119.0$, 114.5, 105.2, 100.9, 68.1, 31.4, 19.3, 13.9.

HR-MS (MALDI, DCTB): $m / z=750.4152$, calcd. for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}]^{+}: 750.4145$.

Synthesis of porphyrin Zn 1

A mixture of $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ containing porphyrin $\mathrm{H}_{2} \mathbf{1}(755 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(441 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to the pressure tube. The resulting mixture was heated under microwave irradiation at $100{ }^{\circ} \mathrm{C}$ for 20 min . After finishing the reaction, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford $\mathrm{Zn} \mathbf{1}$ as a purple solid (806 mg , quant.).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=10.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, $8.42(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 8 \mathrm{H}), 1.87(\mathrm{tt}, J=7.1,7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.55(\mathrm{tq}, J=7.4,7.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 12H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.3,149.9,149.5,144.3,132.6,131.6,120.0$, 114.4, 106.2, 100.8, 68.0, 31.5, 19.3, 13.9.

HR-MS (MALDI, DCTB): $m / z=812.3280$, calcd for $\mathrm{H}_{48} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}[M]^{+}: 812.3280$.

Synthesis of porphyrin Zn 2

Zinc porphyrin $\mathrm{Zn} \mathbf{1}(808 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and pyridine (4.0 mL) under N_{2}. After cooling the solution to $-20^{\circ} \mathrm{C}$, NBS ($357 \mathrm{mg}, 2.0$ mmol) was added to the mixture and the resulting solution was stirred at $-20^{\circ} \mathrm{C}$ for 12 hrs. Acetone (15 mL) was then added to quench the reaction and the volatiles were evaporated off. The residue was washed with MeOH to afford Zn 2 as a purple solid (930 mg, 96%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6} / TMS): $\delta=9.61$ (d, $\left.J=4.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.91(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$, $4 \mathrm{H}), 7.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.97(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=6.2 \mathrm{~Hz}, 8 \mathrm{H}), 1.80(\mathrm{tt}, J$ $=7.0,7.0 \mathrm{~Hz}, 8 \mathrm{H}), 1.50(\mathrm{tq}, J=7.4,7.4 \mathrm{~Hz}, 8 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}:$ pyridine- $\left.d_{5}=9: 1(\mathrm{v} / \mathrm{v}) / \mathrm{TMS}\right): \delta=158.1,150.5,150.1$, 144.4, 133.3, 132.8, 121.7, 114.6, 104.7, 100.5, 68.0, 31.4, 19.3, 13.9.

HR-MS (MALDI, DCTB): $m / z=968.1443$, calcd for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{ZnBr}_{2}[\mathrm{M}]^{+}: 968.1490$.

Synthesis of porphyrin ZnL

Zn2

ZnL

Zinc porphyrin $\mathrm{Zn} 2(797 \mathrm{mg}, 820 \mu \mathrm{~mol})$, 9-ethynyltriptycene ($688 \mathrm{mg}, 2.5 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(58 \mathrm{mg}, 82 \mu \mathrm{~mol})$ and $\mathrm{CuI}(19 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were suspended in a mixture of THF and $\mathrm{Et}_{3} \mathrm{~N}(4: 1(\mathrm{v} / \mathrm{v}), 40 \mathrm{~mL})$. The resulting mixture was degassed by three successive freeze-pump-thaw cycles and refluxed for 3 hrs . The reaction mixture was filtered through Celite and the filtrate was evaporated. The crude compound was purified by silica gel column chromatography ($4 \phi \times 14 \mathrm{~cm}$, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 5-4: 6$) to afford a crude green solid, which was further purified by reprecipitation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with MeOH to afford ZnL as a green solid ($1.08 \mathrm{~g}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=10.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 9.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, 8.42 (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.56(\mathrm{dd}, J=1.4,7.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.43(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{t}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 8 \mathrm{H}), 1.87(\mathrm{tt}, J=7.1,7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.60-1.51\left(\mathrm{~m}, 38 \mathrm{H}\right.$, including $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.00(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.4,152.5,150.3,145.1,144.7,143.7,133.5$, $131.4,126.0,125.6,123.8,123.0,122.9,114.3,101.2,101.1,94.9,91.3,68.1,54.9,53.5$, 31.4, 19.3, 13.9 .

HR-MS (MALDI, DCTB): $m / z=1364.5128$, calcd for $\mathrm{C}_{92} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}[M]+: 1364.5158$.

Synthesis of porphyrin $\mathrm{H}_{2} \mathrm{~L}$

The zinc porphyrin $\mathrm{ZnL}(1.01 \mathrm{~g}, 742 \mu \mathrm{~mol})$ was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ mL) and TFA (15 mL). The resulting solution was stirred at room temperature for 1 hr . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL} \times 2)$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL} \times 2)$ and brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude compound was purified by reprecipitation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with MeOH to give $\mathrm{H}_{2} \mathrm{~L}$ as a purple solid ($917 \mathrm{mg}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=9.99(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 9.11(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H})$, $8.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-7.15(\mathrm{~m}$, 23 H , including $\left.\mathrm{CHCl}_{3}\right), 6.91(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H})$, $1.88(\mathrm{tt}, J=7.2,7.2 \mathrm{~Hz}, 8 \mathrm{H}), 1.61-1.51\left(\mathrm{~m}, 48 \mathrm{H}\right.$, including $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $12 \mathrm{H}),-1.99$ (s, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.5,145.0,144.7,143.0,126.0,125.6,123.8$, $122.9,122.0,114.3,101.2,100.5,94.4,91.9,68.1,54.9,53.5,31.4,19.3,13.9$.
HR-MS (MALDI, DCTB): $m / z=1302.6034$, calcd for $\mathrm{C}_{92} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}]^{+}: 1302.6023$.

Synthesis of double-decker complex $\operatorname{Ce}(\mathbf{L})_{2}$

The porphyrin $\mathrm{H}_{2} \mathrm{~L}(133 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Ce}(\mathrm{acac})_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(98 \mathrm{mg}, 199 \mu \mathrm{~mol})$, and $o-$ DCB (10 mL) were added to the pressure tube. The resulting mixture was heated under microwave irradiation at $250^{\circ} \mathrm{C}$ for 1 hr . Once back to room temperature, $\mathrm{Ce}(\mathrm{acac})_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ ($201 \mathrm{mg}, 410 \mu \mathrm{~mol}$) was added to the reaction mixture. The resulting mixture was further heated under microwave irradiation at $250^{\circ} \mathrm{C}$ for 2.5 hrs . The reaction mixture was then purified by silica gel column chromatography ($4 \phi \times 14 \mathrm{~cm}$, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=6: 4$). The main fraction was further purified by recycling GPC (JAIGEL 2H-2.5H, eluent : CHCl_{3}) to afford $\mathrm{Ce}(\mathbf{L})_{2}$ as a blackish brown solid ($80 \mathrm{mg}, 58 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=9.85$ ($\mathrm{d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}$), 9.56 (d, $J=4.2 \mathrm{~Hz}, 4 \mathrm{H}$), $9.10(\mathrm{br}, 4 \mathrm{H}), 8.90(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 12 \mathrm{H}), 8.50(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 12 \mathrm{H}), 7.08(\mathrm{t}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 16 \mathrm{H}), 5.80(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 4 \mathrm{H}), 5.67(\mathrm{~s}, 4 \mathrm{H}), 4.76-4.72(\mathrm{~m}, 4 \mathrm{H}), 4.65-4.61(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 8 \mathrm{H}), 1.91-$ $1.79(\mathrm{~m}, 8 \mathrm{H}), 1.56-1.48\left(\mathrm{~m}, 18 \mathrm{H}\right.$, including $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{tq}, J=7.4$, $7.4 \mathrm{~Hz}, 8 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}), 0.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.9,158.1,155.2,155.0,152.9,152.3,145.5$, 144.7, 143.0, 130.6, 129.0, 128.9, 127.3, 125.9, 125.8, 125.6, 123.6, 123.1, 115.6, 114.9, 103.6, 101.5, 93.7, 91.5, 69.0, 67.6, 54.6, 53.7, 31.6, 31.1, 19.4, 19.0, 14.1, 13.7.

HR-MS (MALDI, DCTB): $m / z=2741.0850$, calcd for $\mathrm{C}_{184} \mathrm{H}_{152} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Ce}[\mathrm{M}]^{+}: 2741.0787$. Elemental Anal. calcd for $\mathrm{C}_{184} \mathrm{H}_{152} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Ce}: \mathrm{C} ; 80.56, \mathrm{H} ; 5.58, \mathrm{~N} ; 4.08$, found: C; 80.42, H; 5.51, N; 4.16 (0.14% error).

Synthesis of porphyrin Zn3

Zinc porphyrin $\mathrm{Zn} 2(293 \mathrm{mg}, 302 \mu \mathrm{~mol}$), phenylacetylene ($132 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(22 \mathrm{mg}, 32 \mu \mathrm{~mol})$ and $\mathrm{CuI}(6 \mathrm{mg}, 33 \mu \mathrm{~mol})$ were suspended in a mixture of THF and $\mathrm{Et}_{3} \mathrm{~N}(4: 1(\mathrm{v} / \mathrm{v}), 15 \mathrm{~mL})$. The resulting mixture was degassed by four successive freeze-pump-thaw cycles and then refluxed for 3 hrs. The reaction mixture was filtered through Celite and the filtrate was evaporated. The crude compound was purified by silica gel column chromatography ($4 \phi \times 13 \mathrm{~cm}$, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 6$) to afford a crude green solid, which was further purified by reprecipitation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with MeOH to afford Zn 3 as a green solid ($253 \mathrm{mg}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=9.76$ (d, $\left.J=5.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 9.06$ (d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$), 8.04-8.02 (m, 4H), 7.59-7.56 (m, 4H), 7.52-7.48 (m, 2H), 7.37 (d, $J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.91$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.88(\mathrm{tt}, J=7.1,7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.60-1.51(\mathrm{~m}$, 26 H , including $\mathrm{H}_{2} \mathrm{O}$), $1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.3,152.0,149.8,143.8,132.8,131.5,130.9$, 128.6, 128.5, 123.9, 122.7, 114.2, 101.6, 101.1, 96.5, 92.2, 68.1, 31.4, 19.3, 13.9.

HR-MS (MALDI, DCTB): $m / z=1012.3889$, calcd for $\mathrm{C}_{64} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}[\mathrm{M}]^{+}: 1012.3906$.

Synthesis of porphyrin $\mathrm{H}_{2} 3$

The zinc porphyrin Zn 3 ($508 \mathrm{mg}, 500 \mu \mathrm{~mol}$) was dissolved in the mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ mL) and TFA (10 mL). The resulting solution was stirred at room temperature for 1 hr . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give $\mathrm{H}_{2} \mathbf{3}$ as a purple solid (475 mg , quant.).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=9.72(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.96(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, $8.05-8.02(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.91$ $(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.88(\mathrm{tt}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 16 \mathrm{H}$, including $\mathrm{H}_{2} \mathrm{O}$), $1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H}),-2.01(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.5,143.0,131.7,128.7,123.8,121.8,114.3$, 101.2, 101.0, 97.2, $91.9,68.1,31.4,19.3,13.9$.

HR-MS (MALDI, DCTB): $m / z=950.4774$, calcd for $\mathrm{C}_{64} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}]^{+}: 950.4771$.

Synthesis of double-decker complex $\mathrm{Ce}(\mathbf{3})_{2}$

The porphyrin $\mathrm{H}_{2} \mathbf{3}(95 \mathrm{mg}, 99 \mu \mathrm{~mol})$, $\mathrm{Ce}(\mathrm{acac})_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(131 \mathrm{mg}, 298 \mu \mathrm{~mol})$ and $o-\mathrm{DCB}$ $(5.0 \mathrm{~mL})$ were added to the pressure tube. The resulting mixture was heated under microwave irradiation at $220^{\circ} \mathrm{C}$ for 0.5 hr and then $240^{\circ} \mathrm{C}$ for 0.5 hr with two cycles. The reaction mixture was purified by silica gel column chromatography ($4 \phi \times 15 \mathrm{~cm}$, hexane : $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1-4: 6$) to yield $\mathrm{Ce}(\mathbf{3})_{2}$ as a blackish brown solid ($31 \mathrm{mg}, 31 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=9.42$ (d, $\left.J=4.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 9.18$ (d, $J=4.8 \mathrm{~Hz}, 4 \mathrm{H}$), 8.96 (br, 4H), 8.52 (d, $J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.34(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H})$, 7.71 (dd, $J=7.4,7.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.64$ (dd, $J=1.6,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.85-4.74(\mathrm{~m}, 8 \mathrm{H}), 3.69(\mathrm{t}, J=5.6 \mathrm{~Hz}, 8 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 8 \mathrm{H})$, $1.93-1.87(\mathrm{~m}, 8 \mathrm{H}), 1.55-1.49\left(\mathrm{~m}, 25 \mathrm{H}\right.$, including $\left.\mathrm{H}_{2} \mathrm{O}\right), 1.31-1.21(\mathrm{~m}, 33 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$): $\delta=158.8,158.0,155.4,151.8,151.5,150.3,142.8$, $132.4,130.4,128.8,128.7,128.2,127.8,127.6,125.1,123.8,115.4,115.0,104.5,101.3$, $98.0,90.7,68.9,67.6,32.0,31.0,19.8,19.0,14.3,13.7$.
HR-MS (MALDI, DCTB): $m / z=2036.8296$, calcd for $\mathrm{C}_{128} \mathrm{H}_{120} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Ce}[\mathrm{M}]^{+}: 2036.8283$.

Figure S1. MALDI-TOF MS spectrum of $\mathrm{Ce}(\mathbf{L})_{2}$ (top) and $\mathrm{Ce}(\mathbf{3})_{2}$ (bottom)

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathrm{Ce}(\mathbf{L})_{2}$ in CDCl_{3}.

Figure S3. Aromatic region of VT ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathrm{Ce}(\mathbf{L})_{2}$ in toluene- $d_{8}(400 \mathrm{MHz})$.

373 K

353 K

333 K

ppm

Figure S4. Aromatic region of VT ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathrm{Ce}(\mathbf{3})_{2}$ in toluene- $d_{8}(400 \mathrm{MHz})$.
(a)

(b)

Figure S5. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{H}_{2} \mathbf{1}$ in CDCl_{3}
(a)

(b)

Figure S6. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of Zn 1 in CDCl_{3}.
(a)

(b)

Figure $S 7$. (a) ${ }^{1} \mathrm{H}$ spectrum in DMSO- d_{6} and (b) ${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} : pyrdine$d_{5}(9: 1(\mathrm{v} / \mathrm{v}))$ of Zn 2 .
(a)

(b)

Figure S8. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of ZnL in CDCl_{3}.
(a)

(b)

Figure S9. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{H}_{2} \mathrm{~L}$ in CDCl_{3}.
(a)

(b)

Figure S10. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{Ce}(\mathbf{L})_{2}$ in CDCl_{3}.

Figure S11. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of Zn 3 in CDCl_{3}.

Figure S12. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{H}_{2} \mathbf{3}$ in CDCl_{3}.

Figure S13. (a) ${ }^{1} \mathrm{H}$ and (b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{Ce}(3)_{2}$ in CDCl_{3}.

Figure $\mathbf{S 1 4 .}$ COSY spectrum of $\mathrm{Ce}(\mathbf{L})_{2}$ in CDCl_{3}.

Figure $\mathbf{S 1 5}$. NOESY spectrum of $\mathrm{Ce}(\mathbf{1})_{2}$.

Single crystal X-ray analysis of $\mathbf{C e}(\mathbf{L})_{2}$

Single crystals suitable for the single crystal X-ray analysis were obtained by slow diffusion of MeOH into a CHCl_{3} solution of $\mathrm{Ce}(\mathbf{L})_{2}$. The single crystal X-ray diffraction data was collected on a Rigaku VariMax RAPID (1.2kW) diffractometer equipped with confocal mirror optics MoK α radiation and IP detector. The collected X-ray diffraction data were processed using the Rapid Auto software. The structure was solved by SHELXT ${ }^{[4]}$ and refined by full-matrix least-squares on $F 2$ using the SHELXL-2019/2 ${ }^{[5]}$ and Olex2. ${ }^{[6]}$ The geometrical restraints, i.e. DFIX, SIMU and RIGU on peripheral alkyl chains as well as the triptycene moiety, were used in the refinements. The Solvent Mask function of Olex2 was employed to remove the disordered chloroform and methanol molecules which were used for the preparation of single crystals since the diffraction of these crystalline solvent molecules was weak and the electron density of solvent molecules hardly be modeled.

Figure S16. ORTEP representation of a side view (left) and a top view (right) of $\mathrm{Ce}(\mathbf{L})_{2}$. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and solvent molecules are omitted for clarity. (CCDC deposit number: 2258829)

Table S1. Crystal data and structure refinement for $\mathrm{Ce}(\mathbf{L})_{2}$ (CCDC deposit number: 2258829)

Empirical formula	C186 H154 Ce Cl6 N8 O8
Formula weight	2981.98
Temperature	103.15 K
Wavelength	0.71075 A
Crystal system	trigonal
Space group	R-3 (\#148)
Unit cell dimensions	$\mathrm{a}=41.9814(5) \AA$
	$\mathrm{b}=41.9814(8) \AA$
	$\mathrm{c}=53.6321(10) \AA$
	$\alpha=90^{\circ}$
	$\beta=90^{\circ}$
	$\gamma=120^{\circ}$
Volume	81860(3) \AA^{3}
Z	18
Density (calculated)	$1.089 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.392 \mathrm{~mm}^{-1}$
F(000)	27900.0
Crystal size	$0.2 \times 0.19 \times 0.14 \mathrm{~mm}^{3}$
Theta range for data collection	1.887 to 25.351°
Index ranges	$-50<=\mathrm{h}<=50,-50<=\mathrm{k}<=50,-64<=\mathrm{l}<=64$
Reflections collected	391865
Independent reflections	$33301\left[\mathrm{R}_{\text {int }}=0.0679, \mathrm{R}_{\text {sigma }}=0.0295\right]$
Completeness to theta $=25.351^{\circ}$	99.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.644 and 1.000
Refinement method	Full-matrix least-square on F^{2}
Data / restraints / parameters	33301 / 239 / 1926
Goodness-of-fit on F^{2}	1.170
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0860, \mathrm{wR} 2=0.2678$
R indices (all data)	$\mathrm{R} 1=0.1018, \mathrm{wR} 2=0.2866$
Largest diff. peak and hole	1.77 and -1.08 e. \AA^{-3}

References

[1] G. Rapenne, G. Jimenez-Bueno, Tetrahedron 2007, 63, 7018.
[2] M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802.
[3] S. Tanaka, M. Shirakawa, K. Kaneto, M. Takeuchi, S. Shinkai, Langmuir, 2005, 21, 2163.
[4] G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
[5] G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
[6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

