Supporting Information

Topochemical Reaction Induced the formation of Bi₂S₃ Micro-straws from Bi-

MOF for Ultra-long Zn Storage Life

Lei Gou,*a Kai Liang, Wen-Yan Wang, Ya-Ting Lei, Shou-Lin Xie, Ding-Kai Wei, Dong-

Lin Li^a and Xiao-Yong Fan*a

^a Institute of Energy Materials and Electronic Device, School of Materials Science and

Engineering, Chang'an University, Xi'an 710061, China

*Corresponding authors: leigou@chd.edu.cn (L Gou); xyfan@chd.edu.cn (X.Y. Fan)

Synthesis of the Bi₂S₃-TF

 Bi_2S_3 -TF was also chemically synthesized by a solvothermal method. $Bi(NO_3)_3 \cdot 5H_2O$ (50 mg) and thiourea (CH₄N₂S, 100 mg) were mixed in a mass ratio of 1:2 and added into a 20 mL absolute ethanol solution, which was sonicated for 30 min, and then stirred for 30 min. The mixture was transferred into a PTFE-lined stainless steel autoclave and kept at 160 °C for 6 h before cooling down to room temperature. The resulting product was dried in air overnight after filtering, washed thoroughly with ethanol and water, and labeled as Bi_2S_3 -TF.

Figure S1. High-resolution XPS fine spectra of Bi_2S_3 -TH and Bi_2S_3 -TF

Figure S2. SEM images of the Bi_2S_3 -TF products and corresponding EDS analysis of Bi and S

their elemental mapping (b and c).

Figure S3. XRD patterns of the Bi_2S_3 -TR1 and Bi_2S_3 -TR2

Figure S4. (a) SEM images of the Bi_2S_3 -TR1 products and corresponding EDS analysis of Bi and S their elemental mapping (b and c), (d) SEM images of the Bi_2S_3 -TR2 products and corresponding EDS analysis of Bi and S their elemental mapping (e and f).

Figure S5. CV profiles of the Bi_2S_3 -TR1 and Bi_2S_3 -TR2 electrodes at 0.2 mVs⁻¹ in an aqueous electrolyte of 3M ZnSO₄.

Figure S6. Discharge-charge profile of the Bi_2S_3 -TR1 and Bi_2S_3 -TR2 electrodes at a current density of 0.1 A g⁻¹.

Figure S7. Rate capability at 0.1-5 A g⁻¹ of Bi_2S_3 -TR1 and Bi_2S_3 -TR2

Figure S8. Long-term cycling stability at 1 A g^{-1} of Bi_2S_3 -TR1 and Bi_2S_3 -TR2.

Figure S9. Nyquist plots of Bi_2S_3 -TR1 and Bi_2S_3 -TR2 electrode.

Figure S10. The plots of real parts of the complex impedance versus $\omega^{-0.5}$.

Sample	$R_{s}\left(\Omega\right)$	$R_{ct}\left(\Omega ight)$	σ	D
Bi ₂ S ₃ -TH	3.45	5.47	26.5	1.13168E-10
Bi ₂ S ₃ -TF	2.58	16.79	82.6	1.16481E-11
Bi ₂ S ₃ -TR1	5.66	5.98	48.9	3.32351E-11
Bi ₂ S ₃ -TR2	5.07	7.08	47.9	3.46373E-11

Table S1. EIS data statistics of Bi_2S_3 electrode