Supporting Information for

Co-substitution Design: A New Glaserite-type Rare-earth Phosphate K₂RbSc(PO₄)₂ with High Structural Tolerance

Jingfang Zhou,¹ Pifu Gong,⁴ Mingjun Xia^{2,3} and Qian Wu^{2,3,*}

¹Ocean College of Tangshan Normal University, Hebei Tangshan 063000, China

²Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

³School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China

⁴Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Contents:

1. Supplementary figures

Figure S1. Experimental and calculated powder X-ray diffraction patterns of K₂RbSc(PO₄)₂.

Figure S2. The photograph of K₂RbSc(PO₄)₂ crystal.

Figure S3. The elemental analyses of K, Rb, Sc, P and O atoms for K₂RbSc(PO₄)₂ by EDS.

Figure S4. The plot shows (F(R) \times E)²–E of K₂RbSc(PO₄)₂, K₂RbEr(PO₄)₂ and K₂RbLu(PO₄)₂.

Figure S5. (a)The DSC and TG curves of $K_2RbSc(PO_4)_2$ in the temperature range of 50–1000 °C (The inset plot shows the

temperature range of 50–150 °C); (b)The DTA and TG curves of $K_2RbEr(PO_4)_2$ in the temperature range of 50–1050 °C.

Figure S6. The powder XRD patterns of K₂RbSc(PO₄)₂ before and after melting.

2. Supplementary tables

Table S1. Atomic coordinates and equivalent isotropic displacement parameters for K₂RbSc(PO₄)₂.

Table S2. Selected bond lengths (Å) for $K_2RbSc(PO_4)_2$.

Table S3. Selected bond angles (°) for $K_2RbSc(PO_4)_2$.

Table S4. The element compositions of K₂RbSc(PO₄)₂ by EDS.

Table S5. The bond valence sums (BVS) of K₂RbSc(PO₄)₂.

1. Supplementary figures

Figure S2. The photograph of K₂RbSc(PO₄)₂ crystal.

Figure S3. The elemental analyses of K, Rb, Sc, P and O atoms for $K_2RbSc(PO_4)_2$ by EDS.

Figure S4. The plot shows (F(R) \times E)²–E of K₂RbSc(PO₄)₂, K₂RbEr(PO₄)₂ and K₂RbLu(PO₄)₂.

Figure S5. (a)The DSC and TG curves of $K_2RbSc(PO_4)_2$ in the temperature range of 50–1000 °C (The inset plot shows the temperature range of 50–150 °C); (b)The DTA and TG curves of $K_2RbEr(PO_4)_2$ in the temperature range of 50–1050 °C.

Figure S6. The powder XRD patterns of K₂RbSc(PO₄)₂ before and after melting.

2. Supplementary tables

Atom	Wyckoff	x/a	y/b	z/c	U(eq)/(Ų)
K1	2d	0.0113(11)	0.0113(11)	0.0183(16)	0.0056(5)
Rb1	1b	0.0315(11)	0.0315(11)	0.0208(13)	0.0157(6)
Sc1	1a	0.0045(12)	0.0045(12)	0.025(2)	0.0023(6)
P1	2d	0.0078(12)	0.0078(12)	0.0054(16)	0.0039(6)
01	2d	0.082(6)	0.082(6)	0.026(6)	0.041(3)
02	6i	0.012(2)	0.009(3)	0.059(5)	0.0043(16)

Table S2. Selected bond lengths (Å) for $K_2RbSc(PO_4)_2$.

Atom	Length/Å
Sc1—O2 × 6	2.104(7)
P1-02 × 3	1.526(6)
P1-01	1.480(16)
K1—O2 × 6	2.822(2)
К1—01	2.592(16)
Rb1—O1 × 6	3.223(3)
Rb1—O2 × 6	3.138(8)

Table S3. Selected bond angles (°) for $K_2RbSc(PO_4)_2$.

|--|

02-Sc1-02	89.7(3)	O2-Rb1-O2	123.57(19)
02-Sc1-02	90.3(3)	O2-Rb1-O2	180.0
02-Sc1-02	180.0(3)	O2-Rb1-01	84.4(2)
02-Sc1-02	180.0	O2-Rb1-01	134.8(3)
01-P1-02	109.0(3)	02-Rb1-01	45.2(3)
01—K1—O2	104.17(16)	02-Rb1-01	95.6(2)
01—K1—01	67.8(2)	01-Rb1-01	116.00(18)
01—K1—01	106.7(3)	01—Rb1—01	64.00(18)
O2-Rb1-O2	56.43(19)	01—Rb1—01	180.0

Table S4. The element compositions of $K_2RbSc(PO_4)_2$ by EDS.

Element	Weight%	Atomic%	Atomic ratio
ОК	60.89	79.45	
РК	12.84	8.94	
КК	10.30	5.69	1.96
Sc K	4.07	2.91	1
Rb L	11.91	3.01	1.03
Totals	100.00	100	

Table S5. The bond valence sums (BVS) of $K_2RbSc(PO_4)_2$.

$5) of K_2 RbSc(PO_4)_2.$		
Element	BVS	
K1	1.2343	
Rb1	0.8692	
Sc1	2.9215	
P1	5.1546	
01	-2.1210	
02	-1.9216	