Improving Spin Crossover Characteristics in Heteroleptic [Fe^{III}(qsal-5-I)(qsal-5-OMe)]A Complexes

Raúl Díaz-Torres,^{a+} Silvia Gómez-Coca,^b Eliseo Ruiz,^b Phimphaka Harding^{c+} and David J. Harding^{c+}

^a Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.

^b Departament de Química Inorgànica i Orgànica & IQTC-UB, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain

^c School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

⁺ Previous address: Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand.

D	ר	σ	~
Г	a	в	c

No. Study of [Fe(qsal-I)(qsal-5-OMe)]A complexes with different anions 4 Table S1: List of Fe^{III} systems that exhibit the largest hysteresis. 4 X-crystallography further discussion 4 Table S2: Selected Fe-N/O bond length (Å), volume cell (Å³) and octahedral distortion parameters 6 at various temperatures for 1-4. Table S3: Crystallographic data and structure refinement of all compounds. 8 Figure S1: Mass spectrum (ESI⁺) for 1-4. 10 Figure S2: Experimental PXRD diffractograms and the corresponding simulated patterns for 1-4. 10 Figure S3: Additional cycles $\chi_M T$ vs. T plots of **1-3** 13 Figure S4: TGA curves and its derivatives for 1-4. 14 Figure S5: Plot of the variation of the cell parameter a-axis, b-axis and c-axis at low and high 16 temperature for 1-4. Figure S6: Plot of the variation of the cell volumes at low and high temperature for 1-4. 17 Table S4: Intermolecular interactions of all compounds (Å). 18 Figure S7: Structural representation of the supramolecular 1D chain for 1 at 150 K. 20 Figure S8: Structural representation of the supramolecular 1D chain for 2 at 150 K. 20 Figure S9: Distance between the metal centers in a 1D chain disposition for 1 and 2. 21 Figure S10: 1D chain cross-section for 1 and 2. 21 Figure S11: Structural representation of the P4AE interaction in the supramolecular 2D plane of 1 22 at 150 K. Figure S12: Structural representation of the p-p interaction in the supramolecular 2D plane of 2 at 22 150 K. Figure S13: Structural representation of the 3D structure with the cations interacting by C-H···I 23 interactions for 1 and 2. Figure S14: Structural representation of the 3D structure of 1 and 2 at 150 K. 23 Figure S15: Structural representation of the 3D structure with the interactions of 2 at 150 K. 24 Figure S16: Structural representation of the 3D structure with the methoxy-iodine groups facing 25 each other (1 and 3, top) and shifted (4 bottom). Figure S17: View of d_{chain} and d_{plane} for **3** and **4** at 150 K. 26 Table S5: Distances between the chains (d_{chain}) and the planes (d_{plane}) at different temperatures. 27 28 Table S6: Angle between the 1D chains (θ°) and N-Fe-N angles (θ°).

<u>Comparison of [Fe(qsal-I)(qsal-5-OMe)]OTf with the homoleptic complexes</u>	29
Table S7: Selected Fe-N/O bond length (Å), volume cell (Å ³) and octahedral distortion parameters at various temperatures for 4-6 .	29
Table S8: Crystallographic data and structure refinement for 4-6 .	30
Figure S18: $\chi_M T$ vs. T plots of 6 .	31
Figure S19: Structural representation of the channel in the 3D structure where the DCM solvent is located for 6 . Table S9: Intermolecular interactions for 5-7 (Å)	31 32
Figure S20: Structural representation of the supramolecular 1D chain for 4-6 at 150 K	32
Figure S21: Structural representation of the supramolecular 2D plane for $4-6$ at 150 K	34
Figure S22: Structural representation of the 3D structure for $4-6$ at 150 K.	34
Table S10: Distances between the chains (d _{chain}) and the planes (d _{plane}) at different temperatures for 4-6 .	36
Figure S23: View of d_{chain} (horizontal) and d_{plane} (vertical) for 4 - 6 at 150 K	37
Figure S24: Plot of the variation of the cell parameter a-axis, b-axis and c-axis at low and high temperature for 4-6 .	38
Figure S25: Plot of the variation of the cell volumes at low and high temperature for 4-6 .	39
Figure S26: Interactions of the OTf anion within the 1D chain. Comparison of the different arrangement of the anion with the 1D chain cross-section for 4-6 .	40
Figure S27: Hirshfeld surface 2D fingerprint plots for 4-6 at 150 K.	41
different temperatures.	42
Figure S28: Experimental PXRD diffractograms for 4 at room temperature and after heating at 400 K.	43
Table S12: Summary of SCO features of the homoleptic and heteroleptic complexes within the family	44
Table S13: Comparison of DFT optimized average metal-ligand bond lengths (Å) and volume cells (Å ³) for the studied systems. The available experimental data is indicated in parenthesis.	45
Figure S29: View of d _{chain} (horizontal) and d _{plane} (vertical) and interactions for 4 (experimental) and 4-desolv (simulated) in the LS state.	46
Figure S30: Comparison of π - π interactions in 4 (LS state) (left) and 4-desolv (LS state) (right).	46
Table S14: Distances between the chains (d_{chain}) and the planes (d_{plane}) at different spin state	47
Table S15: Cell parameter <i>a</i> -axis, <i>b</i> -axis and <i>c</i> -axis (Å) at different spin state	47
Table S16: Angle between the ligands	47
References	43

Study of [Fe(qsal-I)(qsal-5-OMe)](A) complexes with different anions

Iron(III) Complex	$\Delta \mathbf{T}$ hysteresis	Ref
[Fe ^{III} (qsal) ₂]NCSe·CH ₂ Cl ₂	76 K	1
β -[Fe(qsal) ₂]I ₃	25 K	2
[Fe ^{III} (qnal-OMe) ₂]BPh ₄ ·2MeOH	110 К	3
[Fe ^{III} (qsal-I) ₂]OTf	8 K	4
[Fe ^{III} (H-5-Cl-thsa-Et)(5-Cl-thsa-Et)]·H₂O	51 K	5
K[Fe(5-Br-thsa) ₂]	52 K	6
[Fe ^{III} (qsal-5-OMe)(qsal-I)]OTf	35 K	This work
[Fe ^{III} (qsal-I) ₂]NTf ₂	34 K	7
[Fe ^{III} (naphBzen) ₂]I	30 K*	8

Table S1. List of Fe^{III} systems that exhibit significant hysteresis.

*hidden hysteresis

X-ray crystallography further discussion

As noted in the main paper the structures contain disorder of the iodo and methoxy groups. To model this disorder required the iodo and methoxy groups to be split into two parts with occupancies initially refined and then (with the exception of **2**), fixed at values close to those found from the refinement. In all cases DFIX restraints were used for the methoxy groups with the C(aromatic)-O bond set to be 1.38 Å, while the O-CH₃ bond was set to 1.42 Å, with 0.02 Å allowed deviation. In some of the structures the aromatic rings to which the iodo and methoxy groups are attached were also found to be disordered and SADI restraints were applied. More specific details for each structure are given below.

For **1**, the occupancies for the two ligands refine close to 50% at both temperatures and hence the occupancies were fixed at 0.5. The methoxy groups were refined isotropically as anisotropic refinement gave unreasonable ellipsoids. At 300 K the methoxy groups were also constrained with an EADP restraint.

In **2**, the refined occupancies for one of the rings were found to be 0.48 and 0.52 on one of the ligands and 0.34 and 0.66 on the other ligand, indicating an excess of the qsal-5-OMe ligand in the crystal structure. EADP constraints were applied to the methoxy groups and RIGU restraints on the disordered salicylaldimine aromatic carbons. Anisotropic refinement of the NCS⁻ anion gave strongly elongated ellipsoids indicating possible disorder in the anion. Attempts to model this disorder did not prove effective, possibly due to the proximity of a nearby inversion center. Consequently, we opted to refine the anion isotropically and with full occupancy.

For the BF₄ complex, **3**, the two ligands refine as 0.4 and 0.6 on one of the ligands and 0.6 and 0.4 on the other ligand, meaning that there is a 1:1 ratio overall. The methoxy groups are refined as isotropic with EADP constraints at 150 K. At 300 K only the O3-C33 methoxy group is isotropic, again requiring an EADP constraint. In both structures only the aromatic rings with the O3-C33 methoxy group are disordered with the aromatic carbons refined isotropically. At low temperature the MeOH molecule refines to *ca*. 0.8 occupancy. However, there are a small number of low intensity Q-peaks close to the MeOH that suggest additional solvent molecules may be present, most probably MeOH. Application of a solvent mask was necessary at 300 K and indicates that there are 1.1 MeOH molecules in the structure and this was used in the description of the compound in the main paper.

In **4**, the refined occupancies for one of the rings were found to be 0.48 and 0.52 on one of the ligands and 0.41 and 0.59 on the other ligand, indicating an excess of the qsal-5-I ligand in the crystal structure. As in **2**, EADP constraints were applied to the methoxy groups. At 280 K the methoxy groups are refined isotropically with an EADP constraint applied to the O3-C33 atoms. RIGU restraints were applied to the C12 \rightarrow C15 and C12A \rightarrow C15A atoms.

In the structure of **6** at 280 K the CH_2Cl_2 molecule was disordered over two positions, in a 40% to 60% ratio. Although the ellipsoids are a little larger than is ideal, application of a solvent mask reveals that 1 equivalent of CH_2Cl_2 is expected and hence the model is reasonable.

	[Fe(qsal-5-OMe)(qsal-	-I)]NO₃·2MeOH 1	[Fe(qsal-5-OMe)(qsal-I)]NCS MeOH·H ₂ O 2
	150 K	300 K	150 K
Fe1-O1ph	1.868(4)	1.918(4)	1.912(5)
Fe1-O2ph	1.884(4)	1.901(4)	1.898(4)
Fe1-Oph _{av}	1.876	1.910	1.900
Fe1-N1quin	2.026(4)	2.113(4)	2.158(4)
Fe1-N2im	1.988(5)	2.088(4)	2.117(5)
Fe1-N3quin	2.026(4)	2.135(4)	2.167(4)
Fe1-N4im	1.984(5)	2.078(5)	2.127(5)
Fe1-Nav	2.006	2.103	2.142
V / ų	1644	1687	1634
<i>Σ</i> -Fe1, Fe2	43	60	71
<i>0</i> -Fe1, Fe2	126	213	272
Spin State	LS	HS	HS

Table S2 Selected Fe-N/O bond length (Å), volume cell (Å³) and octahedral distortion parameters at various temperatures for **1-4**.

	[Fe(qsal-5-OMe)(qsal-I)]BF ₄ ·MeOH 3		[Fe(qsal-5-OMe)(q	sal-I)]OTf·MeOH 4
	150 K	300 K	150 K	280 K
Fe1-O1ph	1.872(2)	1.889(2)	1.880(4)	1.900(4)
Fe1-O2ph	1.878(2)	1.898(2)	1.877(3)	1.908(3)
Fe1-Oph _{av}	1.875	1.894	1.879	1.904
Fe1-N1quin	1.982(3)	2.115(2)	1.980(5)	2.130(4)
Fe1-N2im	1.961(2)	2.059(3)	1.949(6)	2.086(5)
Fe1-N3quin	1.969(2)	2.092(2)	1.977(3)	2.122(4)
Fe1-N4im	1.937(2)	2.057(2)	1.945(7)	2.093(5)
Fe1-Nav	1.962	2.081	1.962	2.107
V / ų	1606	1649	1679	1739
∑-Fe1, Fe2	48	58	46	58
<i>0</i> -Fe1, Fe2	124	190	118	213
Spin state	LS	HS	LS	HS

	[Fe(qsal-5-OMe)(qs	al-I)]NO₃·2MeOH 1	[Fe(qsal-5-OMe)(qsal-I)]NCS·MeOH·H ₂ O 2
	150 K	300 K	150 K
Empirical formula	$C_{33}H_{23}N_5O_6Fel$	$C_{33}H_{23}N_5O_6Fel$	$C_{35}H_{29}FeIN_5O_5S$
Formula weight∕ gmol ⁻¹	768.31	768.31	814.44
Crystal system	triclinic	triclinic	triclinic
Space group	ΡĪ	ΡĪ	PĪ
a / Å	12.0122(3)	11.9974(7)	10.7785(3)
b / Å	12.2552(2)	12.4166(6)	12.6165(4)
c / Å	12.7554(2)	12.9275(5)	13.9032(5)
α/°	80.399(2)	79.464(4)	66.070(3)
β/°	69.404(2)	69.435(5)	74.702(3)
γ/°	69.419(2)	69.693(5)	73.722(3)
Cell volume / ų	1643.55(6)	1686.90(16)	1634.41(10)
Z	2	2	2
Absorption coefficient /	11.484	11.283	12.141
mm ⁻¹			
Reflections collected	25178	19654	25047
Independent reflections,	6004, 0.0966	6143, 0.1093	5964, 0.0836
R _{int}			
Max. and min.	0.531/0.062	1/0.127	0.329/0.081
transmission			
Restrains/parameters	4/479	0/446	22/458
Final R indices $[I \ge 2\sigma (I)]$	0.0648	0.1125	0.0865
R ₁ , wR ₂	0.1773	0.3133	0.2439
CCDC No.	2281918	2281919	2282219

 Table S3 Crystallographic data and structure refinement for 1-4.

	[Fe(qsal-5-OMe)(qsal-I)]BF₄·MeOH 3		[Fe(qsal-5-OMe)(qsal-I)]OTf·MeOH 4
	150 K	300 K	150 K	280 K
Empirical formula	$C_{34}H_{27}BF_4FeIN_4O_4$	$C_{34}H_{27}BF_4FeIN_4O_4$	C35H27F3FeIN4O7S	C ₃₅ H ₂₇ F ₃ FeIN ₄ O ₇ S
Formula weight/ gmol ⁻¹	825.15	825.15	887.41	887.41
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	ΡĪ	ΡĪ	ΡĪ	ΡĪ
a / Å	10.7366(3)	10.8316(5)	12.2770(4)	11.9334(2)
b / Å	12.3118(2)	12.4983(6)	12.4031(5)	12.6849(2)
c / Å	12.7998(3)	12.8260(8)	12.7647(6)	13.1443(4)
α/°	103.907(2)	104.192(5)	68.856(4)	71.125(2)
β/°	98.433(2)	99.345(4)	86.751(3)	86.434(2)
γ/°	96.219(2)	94.337(4)	68.419(4)	67.786(2)
Cell volume / ų	1606.35(7)	1648.87(16)	1679.29(13)	1738.87(7)
Z	2	2	2	2
Absorption coefficient / mm ⁻¹	11.917	11.610	12.047	11.634
Reflections collected	24251	24981	25194	27210
Independent reflections, R _{int}	5873, 0.0752	5993, 0.0638	6140, 0.0848	6347
Max. and min. transmission	0.519/0.168	0.584/0.180	0.508/0.038	0.358/0.044
Restrains/parameters	9/463	18/473	3/490	0/481
Final R indices [I ≥ 2σ (I)]	0.0996	0.0905	0.0690	0.0698
R1, wR2	0.2821	0.2679	0.1675	0.1971
CCDC No.	2281920	2281921	2281922	2281923

Figure S1. Mass spectrum (ESI⁺) for 1-4.

[Fe(qsal-5-OMe)(qsal-I)]NO₃ 1.

[Fe(qsal-5-OMe)(qsal-I)]NCS 2.

[Fe(qsal-5-OMe)(qsal-I)]BF₄ 3.

[Fe(qsal-5-OMe)(qsal-I)]OTf 4.

Figure S2 Experimental PXRD diffractograms (blue) and the corresponding simulated patterns (red) for **1-4**.

Figure S3 Additional cycles $\chi_M T$ vs. *T* plots of **1-3**.

Figure S4 TGA curves for 1-4.

Figure S5: Plot of the variation of the cell volume at low (blue) and high (red) temperature for **1-4**.

Figure S6: Plot of the variation of the cell parameter a-axis, b-axis and c-axis at low (blue) and high (red) temperature for 1-4.

		[Fe(qsal-5-OMe)(qsal-		[Fe(qsal-5-OMe)(qsal-I)]NCS	
		I)]NO₃·2	I)]NO ₃ ·2MeOH 1 MeOH·H ₂ O 2		
		150 K	300 K	150 K	
1D chains					
Fe-Fe					
	π-π (C10-C10)	3.287	3.450	3.444	
	π-π (C28-C24)	3.181	3.228	3.388	
	С-Н…О (Н10-О2)	2.640	2.580	-	
	Caromatic…I (C4-I1)	3.631	3.672	-	
	Fe-Fe (Type A)	6.862	6.832	6.785	
	Fe-Fe (Type B)	7.226	7.260	8.967	
2D plane					
	π-π (P4AE) (C1-C2)	3.361	3.415	3.380	
	C-H…π (P4AE) (H3-centr)	2.624	2.672	3.281	
	π…Ο	-	-	3.936	
	С-Н…С-Н	-	-	2.782	
3D structu	r <u>e</u>				
	Carom ^{····} I (C12-I2)	3.020	-	3.563	
	С-Н…р	-	-	2.797	
Anion	Х…СН	-	-		
	О…СН	2.679	3.057		
	S…CH	-	-		
				3.379	
Solvent		1.877	3.223	2.794	

 Table S4 Intermolecular interactions for 1-4 (Å).

		[Fe(qsal-5-OMe)(qsal- I)]BF₄·MeOH 3		[Fe(qsal-5-OMe)(q	sal-I)]OTf·MeOH 4
		150 K	300 K	150 K	280 K
1D chains					
Fe-Fe					
	π-π (C10-C10)	3.274	3.387	3.260	3.397
	π-π (C28-C24)	3.166	3.226	3.395	3.355
	C-H…O (H10-O2)	2.533	2.552	2.534	2.531
	Caromatic…I (C4-I1)	-	-	-	-
	Fe-Fe (Type A)	6.880	6.851	6.796	6.754
	Fe-Fe (Type B)	7.088	7.072	6.980	6.895
2D plane					
	π-π (P4AE) (C1-C2)	-	-	3.404	3.450
	C-H…π (P4AE) (H3-centr)	-	-	2.509	2.559
	С-Н…О	-	-	-	-
	0…I	-	-	-	-
3D structure					
	C _{arom} …I (C12-I2)	-	-	-	-
	C-H···π	-	-	-	-
Anion	Х…СН	2.512	2.709	-	-
	O…CH	-	-	3.144	3.030
	S…CH	-	-	2.507	2.602
Solvent		3.191	3.137	2.639	2.678

Figure S7: Structural representation of the supramolecular 1D chain for 1 at 150 K.

Figure S8: Structural representation of the supramolecular 1D chain for 2 at 150 K.

Figure S9: Distance between the metal centers in a 1D chain disposition for **1** (top) and **2** (bottom).

Figure S10: 1D chain cross-section for 1 (left) and 2 (right).

Figure S11: Structural representation of the P4AE interaction in the supramolecular 2D plane of **1** at 150 K.

Figure S12: Structural representation from different views of the π - π interactions in the supramolecular 2D plane of **2** at 150 K.

Figure S13: Structural representation of the 3D structure with the cations interacting by C-H…I interactions for **1** (left) and **2** (right).

Figure S14: Structural representation of the 3D structure of **1** (left) and **2** (right) at 150 K.

Figure S15: Structural representation of the 3D structure with the interactions of **2** at 150 K.

[Fe(qsal-5-OMe)(qsal-I)]OTf·MeOH 4

Figure S16: Structural representation of the 3D structure with the methoxy-iodine groups facing each other (**1** and **3**, top) and shifted (**4** bottom).

Figure S17: View of d_{chain} (horizontal) and d_{plane} (vertical) of 4 (left) and 3 (right) at 150 K.

	T = 150 K		T = 300 K (280 K for 5)	
	d_{chain}	d_{plane}	d_{chain}	d_{plane}
[Fe(qsal-5-OMe)(qsal-I)]NO ₃ ·2MeOH 1	12.012	12.255	11.997	12.417
[Fe(qsal-5-OMe)(qsal-I)]NCS·MeOH·H ₂ O 2	12.617	10.779		
[Fe(qsal-5-OMe)(qsal-I)]BF ₄ ·MeOH 3	12.800	10.737	12.826	10.832
[Fe(qsal-5-OMe)(qsal-I)]OTf·MeOH 4	12.277	12.765	11.933	13.144

Table S5 Distances between the chains (d_{chain}) and the planes (d_{plane}) at different temperatures (LT = low temperature, RT = room temperature, HT = high temperature) for **1-4**.

	Temperature	Angle between 1D chains (θ°)	N-Fe-N (θ°)
	150 K	0.0	173
	300 K	0.0	169
[Fe(qsal-5-OMe)(qsal-I)]NCS·MeOH·H ₂ O 2	150 K	0.0	164
	150 K	0.0	176
	300 K	0.0	171
	150 K	0.1	176
	280 K	0.0	167

Table S6 Angle between the 1D chains (θ°) and N-Fe-N angles (θ°) for **1-4**.

Comparison of the [Fe(qsal-I)(qsal-5-OMe)]OTf with the homoleptic complexes

	[Fe(qsal-5-OMe)(qs	sal-I)]OTf·MeOH 4	[Fe(qsal-I) ₂](DTf·MeOH 5	[Fe(qsal-5-OM	e)2]OTf·DCM 6
	150 K	280 K	163 K	293 K	150 K	280 K
Fe1-O1ph	1.880(4)	1.900(4)	1.874(9)	1.906(7)	1.884(2)	1.882(2)
Fe1-O2ph	1.877(3)	1.908(3)	1.878(7)	1.908(6)	1.873(2)	1.873(2)
Fe1-Oph _{av}	1.879	1.904	1.876	1.907	1.878	1.877
Fe1-N1quin	1.980(5)	2.130(4)	1.97(1)	2.10(1)	1.973(2)	1.979(2)
Fe1-N2im	1.949(6)	2.086(5)	1.94(1)	2.145(7)	1.943(2)	1.937(3)
Fe1-N3quin	1.977(3)	2.122(4)	2.010(9)	2.157(3)	1.976(2)	1.987(2)
Fe1-N4im	1.945(7)	2.093(5)	1.95(1)	2.10(1)	1.937(3)	1.939(3)
Fe1-Nav	1.962	2.107	1.967	2.125	1.957	1.960
V / ų	1679	1739	1698	1719	1682	1716
∑-Fe1, Fe2	46	58	44	62	46	45
<i>0</i> -Fe1, Fe2	118	213	114	237	118	117
Spin state	LS	HS	LS	HS	LS	LS

Table S7 Selected Fe-N/O bond length (Å), volume cell (Å³) and octahedral distortion parameters at various temperatures for **4-6**.

	[Fe(qsal-5-OMe)(qsal-I)]OTf·MeOH 4		[Fe(qsal-I) ₂]	OTf∙MeOH 5	[Fe(qsal-5-OMe) ₂]OTf·DCM 6		
	150 K	280 K	163 K	293 K	150 K	280 K	
Empirical formula	C ₃₅ H ₂₇ F ₃ FeIN ₄ O ₇ S	$C_{35}H_{27}F_3FelN_4O_7S$	C34H24F3FeI2N4O6S	C34H24F3FeI2N4O6S	C ₃₆ H ₂₈ Cl ₂ F ₃ FeN ₄ O ₇ S	C ₃₆ H ₂₈ Cl ₂ F ₃ FeN ₄ O ₇ S	
Formula weight/ gmol ⁻¹	887.41	887.41	982.79	982.79	844.43	844.43	
Crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic	
Space group	ΡĪ	ΡĪ	ΡĪ	ΡĪ	ΡĪ	ΡĪ	
a / Å	12.2770(4)	11.9334(2)	12.2488(5)	11.7726(4)	12.3329(3)	12.3692(5)	
b / Å	12.4031(5)	12.6849(2)	12.3956(4)	12.6918(4)	12.3551(2)	12.4482(4)	
c / Å	12.7647(6)	13.1443(4)	12.8192(9)	13.3179(9)	12.8195(3)	12.9361(5)	
α/°	68.856(4)	71.125(2)	70.108(5)	69.437(5)	79.960(2)	74.641(3)	
β/°	86.751(3)	86.434(2)	87.581(6)	85.020(6)	74.257(2)	80.008(3)	
γ/°	68.419(4)	67.786(2)	68.745(5)	67.526(5)	63.718(2)	63.540(4)	
Cell volume / Å ³	1679.29(13)	1738.87(7)	1698.40(15)	1719.03(14)	1682.41(7)	1715.93(13)	
Z	2	2	2	2	2	2	
Absorption coefficient	12.047	11.634	19.012	18.784	6.303	6.180	
/ mm⁻¹							
Reflections collected	25194	27210	19123	21734	26061	27182	
Independent	6140, 0.0848	6347	6290, 0.0875	4843/0.0681	6166/0.0523	6272/0.0437	
reflections, R _{int}							
Max. and min.	0.508/0.038	0.358/0.044	1.0/0.57	1.0/0.34	0.852/0.502	0.831/0.370	
transmission							
Restrains/parameters	3/490	0/481	6/462	12/462	0/489	0/489	
Final R indices [I $\ge 2\sigma$	0.0690	0.0698	0.0969	0.0715	0.0493	0.0539	
(I)]							
R1, wR2	0.1675	0.1971	0.3147	0.2346	0.1321	0.1507	
CCDC No.	2281922	2281923	929013	929014	2281924	2281925	

Table S8 Crystallographic data and structure refinement parameters for 4-6.

Figure S18: $\chi_M T$ vs. T plot of **6**.

Figure S19: Structural representation of the channel in the 3D structure where the DCM solvent is located for **6**.

		[Fe(qsal-5-OMe)(qsal-I)]OTf·MeOH 4		[Fe(qsal-I)	2]OTf·MeOH 5	[Fe(qsal-5-OMe) ₂]OTf·DCM 6		
		150 K	280 K	163 K	293 K	150 K	280 K	
1D chains								
Fe-Fe								
	π-π (C10-C10)	3.260	3.397	3.332	3.461	3.282	3.363	
	π-π (C28-C24)	3.395	3.355	3.385	3.482	3.462	3.481	
	C-H…O (H10-O2)	2.534	2.531	2.506	2.601	2.638	2.656	
	Fe-Fe (Type A)	6.796	6.754	6.756	6.643	6.880	6.911	
	Fe-Fe (Type B)	6.980	6.895	6.997	6.799	6.957	6.963	
2D plane								
	π-π (P4AE) (C1-C2)	3.404	3.450	3.455	3.529	-	-	
	C-H…π (P4AE) (H3-cg)	2.509	2.559	2.467	2.569	-	-	
	C-H…O	-	-	-	-	-	-	
	0…1	-	-	-	-	-	-	
<u>3D</u>								
<u>structure</u>								
	C _{arom} …I (C12-I2)	-	-	-	-	-	-	
	С-Н…π	-	-	-	-	2.895	2.871	
Anion								
	О…СН	2.559	2.642	2.545	2.474	2.494	2.529	
	S…CH	2.507	2.602	2.485	2.629	-	-	
Solvent		2.639	2.678	2.612	2.586	2.284	2.257	

 Table S9 Intermolecular interactions for 4-6 (Å).

Figure S20: Structural representation of the supramolecular 1D chain for 4-6 at 150 K.

Figure S21: Structural representation of the supramolecular 2D plane for 4-6 at 150 K.

Figure S22: Structural representation of the 3D structure for 4-6 at 150 K.

	Т = 150 К		T = RT		
	d_{chain}	d_{plane}	d_{chain}	d_{plane}	
[Fe(qsal-5-OMe)(qsal-I)]OTf·MeOH 4	12.277	12.765	11.933	13.144	
[Fe(qsal-I) ₂]OTf·MeOH 5	12.249	12.819	11.773	13.318	
[Fe(qsal-5-OMe) ₂]OTf·DCM 6	12.819	12.333	12.936	12.448	

Table S10: Distances between the chains (d_{chain}) and the planes (d_{plane}) at different temperatures (LT = low temperature, RT = room temperature, HT = high temperature) for **4-6**.

Figure S23: View of d_{chain} (horizontal) and d_{plane} (vertical) for **4-6** at 150 K.

Figure S24: Plot of the variation of the cell parameter *a*-axis, *b*-axis and *c*-axis at low (blue) and high (red) temperature for 4-6.

Figure S25: Plot of the variation of the cell volumes at low (blue) and high (red) temperature for **4-6**.

Figure S26: Interactions of the OTf anion within the 1D chain for **4-6** (top). Comparison of the different arrangement of the anion with the 1D chain cross-section for **4-6** (bottom).

Figure S27: Hirshfeld surface 2D fingerprint plots for 4-6 at 150 K.

		Н…Н	Н…С	Н…О	H…N	H···I	Н…Х	H···S	С…С	C…O	C…I	0…F	0…I	 ··· 	F···F	Other
[Fe(qsal-5-OMe)(qsal-	150 K															
I)]NO₃·2MeOH 1	300 K	31.0	17.1	20.6	2.6	15.2	-	-	7.3	-	2.9		2.3	0.6	-	0.4
[Fe(qsal-5-OMe)(qsal-	150 K	20 /	22 E	12.2	0 E	26		16	0 1	1 2	0.2		0.2	0.0		1 2
I)]NCS·MeOH·H ₂ O 2	130 K	50.4	22.5	12.5	0.5	2.0	-	4.0	0.1	1.2	0.5		0.5	0.0	-	1.2
[Fe(qsal-5-OMe)(qsal-	150 K	38.6	21.5	8.7	1.0	1.3	19.1	-	6.3	1.9	1.3		0.0	0.0	0.0	0.3
I)]BF₄·MeOH 3	300 K	38.0	20.1	9.4	1.4	1.6	19.3	-	6.7	1.8	1.4		0.0	0.0	0.0	0.3
[Fe(qsal-5-OMe)(qsal-	150 K	34.8	19.6	21.4	1.5	1.5	11.1	0.0	6.4	1.5	0.9	0.0	0.0	0.0	1.2	0.1
I)]OTf·MeOH 4	280 K	35.0	17.8	21.0	2.0	1.3	11.4	0.0	7.4	2.1	0.3		0.1	0.1	1.1	0.4
	163 K	23.3	14.9	19.3	1.3	10.3	10.1	0.0	6.5	1.2	5.8	1.4	0.5	0.8	1.4	4.6
	293 K	24.1	13.3	22.2	1.9	10.5	8.4	0.0	7.3	1.1	4.7		0.7	0.7	1.3	3.8
[Fe(acal-5-0Me)-]OTf.DCM 6	150 K	31.3	15.5	19.4	1.0	-	10.3	0.0	5.4	1.6	-	0.9	-	-	0.0	15.5
	280 K	31.6	15.4	19.7	1.0	-	10.5	0.0	5.2	1.5	-		-	-	0.0	15.1

Table S11: Intermolecular interactions contributions for 1-6 calculated by Hirshfeld surface at different temperatures.

Figure S28: Experimental PXRD diffractograms for **4** at room temperature (blue) and after heating at 400 K (red).

Compound	SCO	T _{1/2}	Hysteresis	Ref
NO₃ anion				
[Fe(qsal-5-OMe)(qsal-I)]NO ₃ ·2MeOH 1	Gradual	260 K	-	This work
[Fe(qsal-I) ₂]NO ₃ ·MeOH	Abrupt	210 К	-	9
[Fe(qsal-5-OMe) ₂]NO ₃	unknown			-
NCS anion				
$[Fe(\alpha sal-5-OMe)(\alpha sal-1)]NCS MeOH H_2O 2$	HS	_	_	This work
[Fe(qsal-I) ₂]NCS·0.25DCM·0.5MeOH	LS	-	-	10
[Fe(qsal-5-OMe) ₂]NCS·DCM	HS	305 K		11
BF₄ anion				
[Fe(qsal-5-OMe)(qsal-I)]BF₄·MeOH 3	Gradual	280 К	-	This work
[Fe(qsal-I) ₂]BF ₄	unknown			-
[Fe(qsal-5-OMe) ₂]BF ₄ ·MeOH	LS	-		11
OTf anion				
[Fe(gsal-5-OMe)(gsal-I)]OTf 4	Abrupt	T _{1/2} 个 = 260 K, T _{1/2} ↓ = 225 K	35 K	This work
[Fe(qsal-I) ₂]OTf 5	Abrupt	$T_{1/2}^{-1}$ = 232 K, $T_{1/2}^{-1}$ = 224 K	8 K	12
[Fe(qsal-5-OMe) ₂]OTf·DCM 6	Stepped-gradual	T ₁ = 160 K, T ₂ = 360 K	-	This work

Table S12: Summary of SCO features of the homoleptic and heteroleptic complexes within the family

		Fe-O _{av}	$Fe-N_{av}$	volume
[Fe(qsal-5-OMe)(qsal- l)]OTf·MeOH 4	HS	1.950 (1.904)	2.164 (2.107)	1681 (1739)
	LS	1.910 (1.879)	1.958 (1.962)	1673 (1679)
[Fe(qsal-5-OMe)(qsal-I)]OTf	HS	1.954	2.160	1643
	LS	1.906	1.956	1610
[Fe(qsal-I) ₂]OTf·MeOH 5	HS	1.948 (1.907)	2.159 (2.125)	1723 (1719)
	LS	1.907 (1.876)	1.958 (1.962)	1691 (1698)
[Fe(qsal-I) ₂]OTf	HS	1.955	2.159	1663
	LS	1.910	1.954	1647
[Fe(qsal-5-OMe) ₂]OTf·DCM 6	HS	1.950	2.157	1728
	LS	1.904 (1.877)	1.955 (1.957)	1691 (1682)
[Fe(qsal-5-OMe) ₂]OTf	HS	1.954	2.154	1685
	LS	1.907	1.954	1652

Table S13 Comparison of DFT optimized average metal-ligand bond lengths (Å) and volume cells ($Å^3$) for the studied systems. The available experimental data is indicated in parenthesis.

Figure S29: View of d_{chain} (horizontal) and d_{plane} (vertical) and interactions for **4** (experimental) and **4-desolv** (simulated) in the LS state.

Figure S30: Comparison of π - π interactions in 4 (LS state) (left) and 4-desolv (LS state) (right).

	l	S	HS		
	d_{chain}	d_{plane}	d_{chain}	d_{plane}	
4 (experimental)	12.277	12.765	11.933	13.144	
4 (simulated)	12.299	12.795	12.149	13.146	
4-desolv (simulated)	11.591	12.670	12.012	13.079	

Table S14: Distances between the chains (d_{chain}) and the planes (d_{plane}) at different spin state (LS = low spin, HS = high spin) for **4** (experimental), **4** (simulated) and **4-desolv** (simulated).

Table S15: Cell parameter *a*-axis, *b*-axis and *c*-axis (Å) at different spin state for **4** (experimental), **4** (simulated) and **4-desolv** (simulated).

	LS			HS				
	a axis	b axis	c axis	a axis	b axis	c axis		
4 (experimental)	12.27	12.40	12.76	11.93	12.68	13.14		
4 (simulated)	12.29	12.48*	12.79	12.14	12.37*	13.14		
4-desolv (simulated)	11.59	12.51*	12.67	12.01	12.31*	13.07		

*Simulated structures correspond to supercell (1x2x1), and therefore the values have been divided by 2.

Table S16: Angle between the ligands for **4** (experimental), **4** (simulated) and **4-desolv**(simulated).

	LS	HS
	angle	angle
4 (experimental)	86.6°	84.9°
4 (simulated)	84.0°	83.4°
4-desolv (simulated)	89.4°	78.5°

References

- 1 S. Hayami, Z. Z. Gu, H. Yoshiki, A. Fujishima and O. Sato, Iron(III) spin-crossover compounds with a wide apparent thermal hysteresis around room temperature, *J. Am. Chem. Soc.*, 2001, **123**, 11644–11650.
- K. Takahashi, T. Sato, H. Mori, H. Tajima, Y. Einaga and O. Sato, Cooperative spin transition and thermally quenched high-spin state in new polymorph of [Fe(qsal)₂]I₃, *Hyperfine Interact.*, 2012, 206, 1–5.
- 3 M. Nakaya, K. Shimayama, K. Takami, K. Hirata, A. S. Alao, M. Nakamura, L. F. Lindoy and S. Hayami, Spin-crossover and LIESST Effect for Iron(III) Complex Based on π – π Stacking by Coordination Programming, *Chem. Lett.*, 2014, **43**, 1058–1060.
- 4 W. Phonsri, P. Harding, L. Liu, S. G. Telfer, K. S. Murray, B. Moubaraki, T. M. Ross, G. N. L. Jameson and D. J. Harding, Solvent modified spin crossover in an iron(III) complex: phase changes and an exceptionally wide hysteresis, *Chem. Sci.*, 2017, **8**, 3949–3959.
- 5 Z.-Y. Li, Y.-Y. Wu, Y. Li, J.-H. Wang, A. Sulaiman, M. K. Javed, Y.-C. Zhang, W. Li and X.-H. Bu, Slow Phase Transition-Induced Scan Rate Dependence of Spin Crossover in a Two-Dimensional Supramolecular Fe(III) Complex, *CCS Chem.*, 2022, 1–11.
- S. Kang, Y. Shiota, A. Kariyazaki, S. Kanegawa, K. Yoshizawa and O. Sato, Frontispiece:
 Heterometallic Fe III /K Coordination Polymer with a Wide Thermal Hysteretic Spin Transition at
 Room Temperature, *Chem. A Eur. J.*, 2016, **22**, 532.
- N. Phukkaphan, D. L. Cruickshank, K. S. Murray, W. Phonsri, P. Harding and D. J. Harding,
 Hysteretic spin crossover driven by anion conformational change, *Chem. Commun.*, 2017, 53, 9801–9804.
- T. Boonprab, S. J. Lee, S. G. Telfer, K. S. Murray, W. Phonsri, G. Chastanet, E. Collet, E. Trzop, G.
 N. L. Jameson, P. Harding and D. J. Harding, The First Observation of Hidden Hysteresis in an Iron(III) Spin-Crossover Complex, *Angew. Chem. Int. Ed.*, 2019, **58**, 11811–11815.
- 9 W. Phonsri, Walailak University, 2014.
- 10 W. Phonsri, D. J. Harding, P. Harding, K. S. Murray, B. Moubaraki, I. A. Gass, J. D. Cashion, G. N. L. Jameson and H. Adams, Stepped spin crossover in Fe(III) halogen substituted quinolylsalicylaldimine complexes, *Dalton Trans.*, 2014, **43**, 17509–17518.
- 11 D. Sertphon, D. J. Harding, P. Harding, K. S. Murray, B. Moubaraki, J. D. Cashion and H. Adams, Anionic Tuning of Spin Crossover in Fe III –Quinolylsalicylaldiminate Complexes, *Eur. J. Inorg. Chem.*, 2013, **2013**, 788–795.
- 12 D. J. Harding, W. Phonsri, P. Harding, I. A. Gass, K. S. Murray, B. Moubaraki, J. D. Cashion, L. Liu and S. G. Telfer, Abrupt spin crossover in an iron(III) quinolylsalicylaldimine complex: structural insights and solvent effects, *Chem. Commun.*, 2013, **49**, 6340.