Supporting Information

Activation of 2D Titanate Nanosheets Photocatalyst by Nitrogen Doping

and Solution Plasma Processing

Yanmei Xing, Yiyan Zhang, Changhua Wang,* Rui Wang, Dashuai Li, Shuang Liang, Xintong Zhang*

Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China

1. Experimental Section

1.1. Characterization

The properties of the materials were investigated by the scanning electron microscope (JEOL JSM 4800F SEM) and transmission electron microscopy (TEM) experiment (JEM-2100F microscope at an acceleration voltage of 200 kV). Elemental analysis (Ti, O, N) was performed on a Vario EL microanalyzer. X-ray diffraction (XRD) patterns were collected using a powder X-ray diffractometer (Rigaku D/MAX-2500 with filtered Cu-Ka radiation). Raman spectra were conducted using a JobinYvon HR800 micro-Raman spectrometer with 488 nm laser radiation. X-ray photoelectron spectroscopy (XPS) experiments were performed to verify the electronic states of elements with an Al-Kα achromatic X-ray source, and the binding energy was calibrated by the C 1s peak (284.8 eV) of the exotic contaminated carbon. The UV-vis diffuse reflectance spectra were recorded using a JASCO V-770, with Light source D2/WI. Electron spin resonance (ESR) spectra were obtained at room temperature using a Bruker EMXnano spectrometer. Ultraviolet photoelectron spectroscopy (UPS) measurement was carried out with He (I) (21.22 eV) discharge lamp in an ultra-high vacuum chamber by X-ray photoelectron spectroscopy/ESCA. Photoluminescence (PL) spectra were measured on a Jobin-Yvon HR800 spectrophotometer with the excitation wavelength of 325 nm.

1.2. Measurement of catalytic activity

The experiment was performed in 500 mL Pyrex glass vessel under solar light. In the photocatalytic test, 20 mg of HTiO catalysts were spread over a square of 2.5 cm×2.5 cm glass sheet with 0.2 mL deionized water. The coated glass was put into glass vessel and then the glass vessel was filled with high purity air passing through a water bottle to keep the water vapor concentration at about 70% relative humidity. 5 µmol (200 ppm) of acetaldehyde gas was injected into the reactor and dark adsorption for 30 min. The concentrations of CH₃CHO and CO₂ were measured using a gas chromatograph (GC) (SP-2100A) equipped with a flame ionization detector (FID). Gas samples were collected using a syringe and directly injected into the GC.

1.3. Synthesis of photocatalyst

1.3.1. Synthesis of titanate nanosheets (HTiO)

The layered protonic titanate, $H_xTi_{2-x/4} \bullet_{x/4}O_4 H_2O$ (x~0.7), was prepared by repeating twice the heat treatment (800 °C, 20 h) of a stoichiometric mixture of Cs₂CO₃ (3.26 g) and TiO₂ (4.24 g). The interlayer Cs ions were extracted by stirring ~5 g of Cs_xTi_{2-x/4} $\bullet_{x/4}O_4$ in a 1 mol L⁻¹ HCl solution (100 mL). After three cycles of acid exchange, the solid was washed with copious water to remove excess acid, filtered, and then collected by centrifugation and lyophilization.

1.3.2. Synthesis of N-doped titanate nanosheets

The N-doped titanate nanosheets was prepared by heat treatment (400 °C, 2 h) of a stoichiometric mixture of urea and HTiO, yellow nitrogen-doped titanate nanosheet layers were obtained. The stoichiometric ratios of HTiO and urea were 4:1, 2:1 and 1:1, respectively, and the obtained samples were recorded as N-HTiO-L, N-HTiO and N-HTiO-H.

1.3.3. SPP modified N-doped titanate nanosheets

Plasma was generated by a bipolar-DC pulsed power supply (Kurita, Japan). The voltage, pulse width, and frequency were ± 2.5 kV, 2.0 μ s and 20 kHz, respectively. Besides, the solution temperature was kept at 10 °C with cooling circulating water. N-HTiO-SPP was prepared by adding 0.1 g pre-synthesized N-HTiO to 100 mL deionized water. The solution was subjected to ultrasonic treatment for 30 min. N₂ was introduced into the reactor through the hollow tungsten electrode. The flow rate of nitrogen is 2 L min⁻¹. The solution plasma process lasted for 1 h. Solution plasma-treated samples were collected by centrifugation and lyophilization.

Figure S1. EDS analysis of N-HTiO shows the locations of Ti, O, N.

Figure S2. XRD patterns of HTiO, N-HTiO-L, N-HTiO and N-HTiO-H.

Figure S3. The band gap energies of HTiO, N-HTiO and N-HTiO-SPP, respectively.

Figure S4. (a) UV-vis absorption spectra and (b) the corresponding band gap energies of HTiO and HTiO-SPP.

Figure S5. (a) Ion chromatogram of N-HTiO-SPP surface acetic acid before and after acetaldehyde degradation and 1 mM acetic acid standard; (b) DRIFTS spectra collected at room temperature while performing the acetaldehyde photodegradation on N-HTiO-SPP.

Figure S6. (a) The atomic emission spectrum of the synthesis process of N-HTiO-SPP and N-HTiO-O₂; (b) The ESR spectra of N-HTiO, N-HTiO-SPP and N-HTiO-O₂; Time-dependent profiles for the photocatalytic oxidation of (c) CH_3CHO and concurrent production of (d) CO_2 on N-HTiO, N-HTiO-SPP and N-HTiO-O₂.

Figure S7. Time-dependent profiles for the photocatalytic oxidation of (a) CH_3CHO and concurrent production of (b) CO_2 on HTiO and HTiO-SPP; (c) Photoluminescence spectra of HTiO and HTiO-SPP; (d) EIS Nyquist plots of HTiO and HTiO-SPP.

Sample	Ti/wt%	O/wt%	N/wt%
HTiO	46.20	53.80	-
N-HTiO	52.47	46.08	1.45
N-HTiO-SPP	49.20	48.67	2.13

Table S1 Elemental analysis data of HTiO, N-HTiO and N-HTiO-SPP.