Supplementary Information for

Structural Variation, Magnetism and Single-source Deposition of Lanthanide-containing Polyoxotitanates

Rosa Müller,^a Olivia Georghiades,^a Joshua D. Bocarsly,^a Farheen N. Sayed,^a Victor Riesgo Gonzalez,^a Andrew D. Bond,^a Clare P. Grey^a and Dominic S. Wright^{*,a}

^a The Yusuf Hamied Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK. E-mail: <u>dsw1000@cam.ac.uk</u>; Tel: +44 (0)1223 763122.

Synthesis of Ln-POTs	2
Powder diffraction data	2
IR data	3
Crystallographic data	4
Analysis of the TiO $_6$ octahedral geometry \ldots	5
Magnetic Measurements (AC susceptibility data)	9
Decomposition Studies	10
TGA data	10
Raman spectra	10
SEM images	12
EDX data	14
Rietveld Refinement	16
UV-Vis measurements	19
Linear extrapolation	19
Direct band gap semiconductor model	24

Synthesis of Ln-POTs

Figure S1 Experimental powder diffraction patterns of the newly synthesised Ln_2Ti_4 -cages (Ln = Sm, Gd, Tb, Dy, Ho, Yb) and their predicted patterns (dashed line) calculated from the single crystal data. Some impurities in form of $Ti_{16}O_{16}(OEt)_{32}$, indicated by low-angle diffraction peaks are present in case of **Yb_2Ti_4**. For **Tm_2Ti_4** not enough sample for bulk analysis was obtained.

Figure S2 Comparison of the experimental powder diffraction data obtained for the synthesised Ce-POTs with calculated diffraction patterns of the possible reaction products Ti₂₈Ce, Ti₈Ce and Ti₄Ce₂. The smallest cage type Ti₄Ce₂ is found to be the main component.

Figure S3 IR spectra of the complete series of Ln-POTs (Ln = La-Er, Yb). Not enough sample was obtained in case of Ln = Tm. A distinct spectrum is observed for Ln = Er (Ti_8Er).

Crystallographic data

Table S1 Crystallographic and refinement data for Ti₄Ln₂ (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb).

	Ti₄Sm₂	Ti₄Gd₂	Ti₄Tb₂	Ti₄Dy₂	Ti₄Ho₂	Ti4Er2	Ti₄Tm₂	Ti₄Yb₂
CCDC number	2283720	2283721	2283722	2283715	2283717	2283719	2283718	2283716
Cambridge	DW_B1_0414	DW_B2_0373	DW_B1_0430	DW_B2_0375	DW_B1_0431	DW_B1_0463	DW_B1_0479	DW_B1_0396
data number								
Chemical for-	$C_{36}H_{92}Cl_2O_{20}Sm_2$	$C_{36}H_{92}Cl_2O_{20}Gd_2$	$C_{36}H_{92}CI_2O_{20}Tb_2T$	$C_{36}H_{92}CI_2O_{20}D$	$C_{36}H_{92}CI_2O_{20}H$	$C_{36}H_{92}Cl_2O_{20}Er$	$C_{36}H_{92}CI_2O_{20}T$	$C_{36}H_{92}CI_2O_{20}Y$
mula	Ti4	Ti4	İ4	y2Ti4	O2Ti4	2 Ti 4	m2Ti4	b2Ti4
Formula	1408.29	1422.09	1425.43	1432.59	1437.45	1442.11	1445.45	1453.67
weight								
Temperature / K	180(2)	180(2)	180(2)	180(2)	180(2)	180(2)	180(2)	180(2)
Crystal sys- tem	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P 2 ₁ /n	P 2 ₁ /n	P 21/n	P 21/n	P 21/n	P 21/n	P 21/n	P 2 ₁ /n
a/Å	11.9374(4)	11.9414(5)	11.9091(5)	11.9219(5)	11.9118(4)	11.9203(6)	11.9196(4)	11.9050(3)
b/Å	18.9359(6)	18.8718(8)	18.8221(8)	18.7644(8)	18.7283(6)	18.7662(10)	18.7621(6)	18.6786(5)
c/Å	12.7346(4)	12.7327(5)	12.7415(6)	12.7482(6)	12.7532(4)	12.7290(7)	12.7550(4)	12.7568(4)
alpha / °	90	90	90	90	90	90	90	90
beta / °	92.3995(12)	92.454(2)	92.592(2)	92.549(2)	92.6111(12)	92.705(3)	92.8718(13)	92.6397(11)
gamma / °	90	90	90	90	90	90	90	90
Unit-cell vol- ume / ų	2876.07(16)	2866.8(2)	2853.1(2)	2849.0(2)	2842.13(16)	2844.3(3)	2848.90(16)	2833.70(14)
Z	2	2	2	2	2	2	2	2
Calc. density / g cm ⁻³	1.626	1.647	1.659	1.670	1.680	1.684	1.685	1.704
F(000)	1428	1436	1440	1444	1448	1452	1456	1460
Radiation	Cu K	Cu K	Cu K	Cu K	Cu K	Cu K	Cu K	Cu K ?
type								
Absorption coefficient / mm ⁻¹	20.963	20.613	17.865	19.716	10.897	11.170	11.517	11.819
Crystal size /	0.16 x 0.16 x	0.10 x 0.10 x	0.12 x 0.10 x	0.08 x 0.08 x	0.10 x 0.10 x	0.16 x 0.10 x	0.15 x 0.10 x	0.14 x 0.14 x
mm ³	0.08	0.08	0.10	0.04	0.08	0.06	0.10	0.12
2 [®] range / °	10.99–133.26	9.37–133.59	11.00-133.28	11.00-133.06	9.44-133.20	8.40-133.41	10.98-133.30	8.40-133.63
Completeness to max 22	0.994	0.993	0.992	0.995	0.992	0.998	0.994	0.999
No. of reflec- tions meas-	28827	49395	41828	28283	31868	40698	47040	46776
ured	5050	5040	5005	5002	4001	5024	5004	5020
no. of inde-	5059	5049	5005	5003	4981	5024	5004	5020
flections								
R(int)	0.0364	0.0435	0.0433	0.0435	0.0312	0.1390	0.0410	0.0500
No. parame-	329 / 60	329 / 60	329 / 60	329 / 12	329 / 60	309 / 144	318 / 143	338 / 60
ters / re-								
straints								
Final R1 val-	0.0212	0.0183	0.0212	0.0210	0.0206	0.0532	0.0200	0.0244
ues (I > 2?(I))								
Final wR(F ²)	0.0531	0.0448	0.0526	0.0490	0.0505	0.1478	0.0511	0.0591
values (all								
data)								
Goodness-of-	1.047	1.050	1.066	1.043	1.076	1.023	1.071	1.081
fit on F ²	0.001 0.000	0.221 0.570	0.471 0.703	0.207 0.440	0.210 0.545	2 405 4 245	0.545 0.047	1 256 0 002
Largest diff.	0.601, -0.802	0.331, -0.576	0.4/1, -0./02	0.307, -0.410	0.319, -0.545	2.495, -1.245	0.545, -0.917	1.356, -0.882
peak & noie / e Å ⁻³								

Analysis of the TiO₆ octahedral geometry

Table S2 Continuous Shape Measure (CShM, implemented at: <u>https://csm.ouproj.org.il/molecule</u> [I. Tuvi-Arad, G. Alon and D. Avnir]) for Ti₄Ln₂ cages, quantifying the distortion of the TiO₆ octahedra from regularity. The TiO₆ octahedra were isolated from each structure and compared to a regular octahedron with a central point (7-point comparison). CShM = 0 indicates a regular octahedron. Increasing CShM indicates increasing distortion from the regular octahedron.

	Ti₄Ce₂ ZIWYEM	Ti₄Nd₂ DEJRIV	Ti₄Sm₂	Ti₄Eu₂ CURJEG	Ti₄Gd₂	Ti₄Tb₂	Ti ₄ Dy ₂	Ti₄Ho₂	Ti ₄ Er ₂	Ti₄Tm₂	Ti₄Yb₂
Ti1-01	1.934	1.936	1.9371(17)	1.936	1.9357(15)	1.9338(15)	1.9328(18)	1.9348(13)	1.922(5)	1.9312(16)	1.931(2)
Ti1-02	2.067	2.072	2.0639(17)	2.071	2.0642(15)	2.0617(16)	2.0635(18)	2.0643(13)	2.051(5)	2.0620(16)	2.056(2)
Ti1-04	2.178	2.183	2.1690(17)	2.168	2.1674(15)	2.1593(15)	2.1583(16)	2.1554(13)	2.158(5)	2.1482(16)	2.145(2)
Ti1-05	1.777	1.789	1.7888(18)	1.789	1.7902(15)	1.7890(16)	1.7880(17)	1.7866(14)	1.795(5)	1.7884(17)	1.786(2)
Ti1—06	1.859	1.859	1.8649(18)	1.861	1.8622(15)	1.8578(15)	1.8582(16)	1.8600(13)	1.845(5)	1.8562(16)	1.856(2)
Ti1-010	1.987	1.977	1.9774(17)	1.981	1.9773(14)	1.9819(15)	1.9833(16)	1.9827(12)	1.982(5)	1.9890(15)	1.992(2)
05—Ti1—06	98.12	98.99	98.86(8)	98.51	98.78(7)	98.73(7)	98.68(8)	98.65(6)	97.9(2)	98.30(8)	98.54(11)
05-Ti1-01	99.30	99.14	99.09(8)	99.05	99.10(7)	99.28(7)	99.27(8)	99.38(6)	99.1(3)	99.48(8)	99.43(11)
06-Ti1-01	102.61	103.08	103.34(8)	103.62	103.75(7)	103.86(7)	104.17(8)	104.07(6)	104.0(2)	104.09(7)	104.41(10)
05—Ti1— 010	164.07	163.24	163.70(8)	164.05	163.82(7)	164.14(7)	164.25(8)	164.33(6)	164.3(3)	164.51(8)	164.78(10)
06—Ti1— 010	96.29	96.47	96.33(7)	96.41	96.37(6)	96.12(6)	96.12(7)	96.12(5)	97.0(2)	96.39(7)	95.97(9)
01—Ti1— 010	84.07	83.52	83.04(7)	82.80	82.73(6)	82.44(6)	82.18(7)	81.98(5)	82.1(2)	81.60(6)	81.27(9)
05-Ti1-02	95.77	96.04	96.21(8)	96.41	96.35(7)	96.47(7)	96.61(8)	96.66(6)	97.3(3)	96.93(8)	97.09(11)
06-Ti1-02	95.17	94.71	94.79(8)	94.49	94.58(7)	94.48(7)	94.24(8)	94.26(6)	94.8(2)	94.31(7)	94.14(10)
01-Ti1-02	154.72	154.40	154.06(7)	154.06	153.82(6)	153.59(6)	153.45(7)	153.42(5)	153.0(2)	153.18(7)	152.91(9)
010—Ti1— 02	76.17	76.23	76.59(7)	76.78	76.72(6)	76.79(6)	76.91(7)	77.00(5)	76.5(2)	77.03(6)	77.26(9)
05-Ti1-04	93.72	92.99	93.20(8)	93.46	93.29(7)	93.58(7)	93.63(7)	93.65(6)	93.8(2)	93.91(7)	93.91(10)
06-Ti1-04	165.69	165.35	165.21(7)	165.11	165.06(6)	164.72(6)	164.52(7)	164.58(6)	165.3(2)	164.71(7)	164.26(9)
01-Ti1-04	83.26	83.14	83.02(7)	83.07	82.86(6)	82.90(6)	82.90(7)	82.91(5)	82.7(2)	82.80(6)	82.84(9)
010—Ti1— 04	71.10	70.81	70.93(6)	70.96	70.90(5)	70.90(6)	70.90(6)	70.95(5)	70.7(2)	70.82(6)	71.02(8)
02-Ti1-04	75.59	75.57	75.31(7)	75.30	75.24(6)	75.05(6)	74.96(7)	75.01(5)	74.9(2)	75.03(6)	74.72(9)
CShM (Oct)	1.037	1.073	1.088	1.090	1.104	1.109	1.122	1.125	1.152	1.139	1.145

Table S3 Continuous Shape Measure (CShM), cont'd. Atoms O8 and O10 form the edge bridged by Ln^{3+} : the highlighted O8—Ti2—O10 angle decreases steadily as Ln^{3+} gets smaller across the row (atom numbering in Figure S3). This indicates an increase in structural strain along the series of Ti₄Ln₂ cages.

	Ti ₄ Ce ₂ ZIWYEM	Ti₄Nd₂ DEJRIV	Ti₄Sm₂	Ti₄Eu₂ CURJEG	Ti₄Gd₂	Ti₄Tb₂	Ti ₄ Dy ₂	Ti₄Ho₂	Ti₄Er₂	Ti₄Tm₂	Ti₄Yb₂
Ti2—02	2.020	2.024	2.0180(17)	2.023	2.0187(15)	2.0173(15)	2.0185(17)	2.0150(13)	2.005(5)	2.0168(16)	2.015(2)
Ti2—03	1.919	1.918	1.9195(17)	1.922	1.9214(15)	1.9181(15)	1.9155(17)	1.9173(13)	1.912(5)	1.9155(16)	1.913(2)
Ti2—O4	2.113	2.113	2.1165(17)	2.114	2.1155(14)	2.1150(15)	2.1141(17)	2.1113(13)	2.104(5)	2.1128(16)	2.108(2)
Ti2—07	1.791	1.789	1.7877(18)	1.790	1.7911(16)	1.7895(16)	1.7884(18)	1.7912(13)	1.790(6)	1.7913(17)	1.792(2)
Ti2—08	1.914	1.916	1.9135(18)	1.919	1.9169(15)	1.9143(16)	1.9150(17)	1.9162(13)	1.912(5)	1.9155(16)	1.913(2)
Ti2—010	2.003	1.998	2.0018(16)	2.008	2.0018(14)	2.0020(15)	2.0033(17)	2.0037(12)	1.990(5)	2.0017(16)	2.005(2)
07—Ti2—08	101.56	102.42	102.63(8)	102.37	102.77(7)	102.93(7)	102.87(8)	102.87(6)	103.0(2)	103.04(7)	103.01(10)
07—Ti2—O3	100.72	100.96	101.06(8)	101.00	100.92(7)	101.05(7)	101.06(8)	101.15(6)	101.3(2)	101.29(7)	101.39(10)
08—Ti2—O3	95.51	95.86	96.39(8)	96.46	96.63(7)	96.82(7)	97.26(7)	97.32(6)	96.6(2)	97.46(7)	97.86(10)
07—Ti2—010	169.94	169.37	169.48(8)	169.81	169.74(6)	169.75(7)	169.88(7)	170.12(6)	170.4(2)	170.30(7)	170.33(10)
08—Ti2—O10	84.62	84.25	83.88(7)	83.71	83.40(6)	83.22(6)	82.95(7)	82.71(5)	82.3(2)	82.39(6)	82.04(9)
03—Ti2—010	86.43	86.40	86.24(7)	86.27	86.32(6)	86.17(6)	86.23(7)	86.03(5)	85.9(2)	85.79(6)	85.90(9)
07—Ti2—02	94.19	93.80	93.53(8)	93.52	93.51(7)	93.35(7)	93.21(8)	93.22(6)	93.7(2)	93.22(7)	93.01(10)
08—Ti2—02	98.90	98.94	99.51(8)	99.68	99.82(7)	100.10(7)	100.00(7)	100.06(6)	100.5(2)	100.22(7)	100.27(10)
03—Ti2—02	156.74	156.33	155.50(7)	155.43	155.13(6)	154.71(7)	154.53(8)	154.36(6)	154.1(2)	153.94(7)	153.64(10)
010-Ti2-02	76.90	76.85	77.11(7)	77.27	77.23(6)	77.36(6)	77.51(7)	77.67(5)	77.4(2)	77.79(6)	77.88(9)
07—Ti2—04	101.64	101.48	101.93(8)	102.39	102.36(6)	102.44(7)	102.73(7)	102.98(6)	103.1(2)	103.29(7)	103.40(10)
08—Ti2—04	156.76	156.06	155.40(7)	155.21	154.84(6)	154.59(6)	154.34(7)	154.11(5)	153.9(2)	153.63(7)	153.51(9)
03-Ti2-04	81.51	80.83	80.33(7)	80.08	79.83(6)	79.68(6)	79.45(7)	79.12(5)	79.0(2)	78.89(7)	78.88(9)
010-Ti2-04	72.21	71.91	71.60(6)	71.60	71.56(5)	71.47(6)	71.47(6)	71.50(5)	71.7(2)	71.33(6)	71.54(8)
02-Ti2-04	78.04	78.14	77.44(7)	77.48	77.34(6)	76.95(6)	76.87(7)	77.01(5)	77.0(2)	76.75(6)	76.34(9)
CShM (Oct)	1.241	1.305	1.397	1.426	1.472	1.512	1.545	1.573	1.619	1.634	1.662

Figure S4 Detailed polyhedral representation of the metal-oxo core of the Ti_4Ln_2 cage. The Ti2 octahedron is the one sharing its edge with Ln^{3+} (the "bridging" octahedron), whereas the Ti1 octahedron sits more to the periphery of the complex. The distortion of the Ti2 octahedron is reflected in the O8-Ti2-O10 angle, which shows a steady decrease across the series of lanthanides, as Ln^{3+} gets smaller (see Table S4).

Figure S5 Graphical representation of the CShM obtained for the series of Ti_4Ln_2 cages for the Ti1 and Ti2 octahedron (Figure S3). The Ti2 octahedron is found to be significantly more distorted than the Ti1 octahedron. The steeper gradient across the series for the Ti2 octahedron indicates a larger influence of Ln^{3+} on the distortion compared to the Ti1 octahedron. No crystallographic data are available for Ln = Pr and Pm.

Table S4	Ln-Cl and Ln-O bond	lengths for the nove	l Ti₄Ln₂ cages (Ln = Sm,	Gd, Tb, D	Dy, Ho, Er,	۲m, ۱	∕b) [Å].
----------	---------------------	----------------------	---------------------------------	-----------	-------------	-------	----------

	Ti₄Sm₂	Ti₄Gd₂	Ti4Tb2	Ti₄Dy₂	Ti₄Ho₂	Ti ₄ Er ₂	Ti₄Tm₂	Ti ₄ Yb ₂
Ln—Cl1	2.6927(6)	2.6721(5)	2.6529(5)	2.6423(6)	2.6324(5)	2.6225(18)	2.6120(6)	2.6011(8)
Ln—01	2.4599(17)	2.4436(14)	2.4299(15)	2.4226(16)	2.4109(13)	2.403(5)	2.3951(16)	2.384(2)
Ln—03	2.4614(16)	2.4391(14)	2.4265(15)	2.4162(17)	2.4037(12)	2.386(5)	2.3859(16)	2.382(2)
Ln—04	2.5778(17)	2.5559(14)	2.5448(15)	2.5378(17)	2.5279(12)	2.518(5)	2.5114(16)	2.515(2)
Ln—O8ª	2.4772(17)	2.4501(15)	2.4377(15)	2.4256(18)	2.4109(13)	2.386(6)	2.3894(16)	2.380(2)
Ln—09	2.4464(18)	2.4226(15)	2.4056(15)	2.3939(16)	2.3822(13)	2.360(5)	2.3581(16)	2.340(2)
Ln—010	2.3887(15)	2.3656(13)	2.3489(13)	2.3348(15)	2.3233(12)	2.312(5)	2.2976(14)	2.2871(19)
Ln—O10 ^a	2.3758(16)	2.3598(13)	2.3401(14)	2.3302(15)	2.3187(12)	2.316(5)	2.3002(15)	2.287(2)
(Ln—O)ave	2.455	2.434	2.419	2.409	2.397	2.383	2.377	2.368

Symmetry code: a = 1-x, 1-y, 1-z

 Table S5
 Ln-Cl and Ln-O bond lengths for previously published Ti_4Ln_2 cages (Ln = Ce, Nd, Eu) [Å].

	Ti ₄ Ce ₂	Ti ₄ Nd ₂	Ti ₄ Eu ₂
	ZIWYEM	DEJRIV	CURJEG
Ln—Cl1	2.756	2.723	2.684
Ln—O1	2.522	2.485	2.456
Ln—O3	2.523	2.488	2.454
Ln—O4	2.653	2.605	2.575
Ln—O8	2.529	2.501	2.466
Ln—09	2.521	2.481	2.439
Ln-010	2.459	2.405	2.369
Ln-010	2.438	2.422	2.378
(Ln—O)ave	2.521	2.484	2.461

Table S6 Ln-Cl and Ln-O bond lengths for previously published Ti₈Ln cages (Ln = Ce, Er) [Å].

	Ti₃Ce ZIWYAI	Ti8Er ORIFAY
Ln—O	2.418	2.305
Ln—O	2.420	2.345
Ln—O	2.518	2.364
Ln—O	2.563	2.339
Ln—O	2.418	2.312
Ln—O	2.420	2.352
Ln—O	2.518	2.356
Ln—O	2.563	2.345
Ln—O(ethanol)	2.069	—
(Ln—O)ave	2.436	2.340

Table S7 Continuous Shape Measure (CShM) for Ti₈Ln cages.

Ti ₈ Ce	Ti₀Ce (ZIWYAI)		r (ORIFAY)	
Ti1	1.200	Ti1	1.219	[Part of face-sharing pair]
Ti2	1.108	Ti2	1.185	[Part of face-sharing pair]
Ti2A	1.108	Ti3	1.152	[Part of face-sharing pair]
Ti1A	1.200	Ti4	1.201	[Part of face-sharing pair]
Ti3A	0.843	Ti5	0.817	[Part of edge-sharing TiO core]
Ti3	0.843	Ti6	0.830	[Part of edge-sharing TiO core]
Ti4	1.694	Ti7	1.635	[Part of edge-sharing TiO core]
Ti4A	1.694	Ti8	1.630	[Part of edge-sharing TiO core]

Figure S6 Comparison of the average Ln-O and Ln-Cl bond lengths in **Ti₂₈Ln**, **Ti₈Ln** and **Ti₄Ln₂** cages based on the structural data in Tables S4-S6. A decreasing trend is observed along the series of lanthanides, which is in agreement with the decreasing ionic radius of Ln³⁺ and the resulting increase in Lewis acidity.

Figure S7 Structural overlay of the two **Ti**₈**Ln** cages (Ln = Ce [red] and Er [blue]). The geometry of the lower section of the complexes (comprising edge-sharing octahedra) is essentially identical. The upper TiO₆ octahedra show some flexibility in the Ln³⁺ binding site: For **Ti**₈**Ce** the octahedra are tilted away from Ce³⁺, and the additional EtOH molecule is coordinated above the binding site. For **Ti**₈**Er** the octahedra are tilted further towards Er³⁺ and there is no additional coordination.

Magnetic measurements

Figure S8 AC susceptibility measurements at various temperatures between 0.1 and 1000 Hz of Dy_2Ti_4 (left) and Ho_2Ti_4 (right). Some temperature independent features are observed in the Dy sample at around 60 Hz, which might result from sample movement during the measurement and can't be assigned to a relaxation response. No features are seen in case of Ho.

Decomposition studies

Figure S9 TGA curves for all Ln-POTs synthesised in this work. The measurements were carried out under nitrogen between 30-800°C. Distinct curves are observed for lanthanum (Ti₂₈La), neodymium (Ti₄Nd₂) and erbium (Ti₈Er). The remaining lanthanides (Ti₄Ln₂) show similar thermal decomposition steps.

Figure S10 Raman spectra of all Ln-TiO₂ samples obtained from hydrolytic decomposition and annealing at 500 and 800°C. The spectra of 500°C-samples show poor crystallinity and were excluded where no significant peaks were visible. However, for Ln = La, Nd, Gd, Ho and Er the formation of the main component anatase (144, 197, 399, 516, 639 cm⁻¹) can be observed even at lower temperatures. Additional peaks account for the formation of Ln₄Ti₉O₂₄ (Ln = Nd) or Ln₂Ti₂O₇.

SEM measurements

Figure S11 Crystalline particles of Sm-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 2.5 mm, 100 μ m and 15 μ m (left to right).

Figure S12 Crystalline particles of Gd-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 3.7 mm, 500 μ m and 6 μ m (left to right).

Figure S13 Crystalline particles of Tb-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 1.6 mm, 100 μ m and 6 μ m (left to right).

Figure S14 Crystalline particles of Dy-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 100 μ m, 60 μ m and 6 μ m (left to right).

Figure S15 Crystalline particles of Ho-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 200 μ m, 20 μ m and 6 μ m (left to right).

Figure S16 Crystalline particles of Tm-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 200 μm and 20 μm (left to right).

Figure S17 Crystalline particles of Yb-TiO₂ after annealing to 800°C under air. Viewing fields are chosen to be 60 μ m.

EDX measurements

Figure S18 Map EDX spectra (at%) and elemental distribution of the decomposed $Ln-TiO_2$ samples for Ln = La, Ce, Nd, Sm, Eu and Gd (ltr, ttb). The samples were sputtered with Pt prior to measurements, which explains the Pt peaks (unassigned) in the spectra.

Figure S19 Map EDX spectra (at%) and elemental distribution of the decomposed $Ln-TiO_2$ samples for Ln = Tb, Dy, Ho, Er, Tm and Yb (ltr, ttb). The samples were sputtered with Pt prior to measurements, which explains the Pt peaks (unassigned) in the spectra.

Rietveld refinements

Figure S20 Measured powder patterns and the fitted curves (red) obtained from Rietveld refinements on Topas Academic for Ln/TiO hybrid materials (from top to bottom; Ln = La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). The peak positions of the single phases are indicated as tick marks below. The data was refined against a silicon standard at 0.82443 Å (Ln=Er) or 0.49381 Å.

Ln	site mixing	R _{wp}	R _{exp}	GoF
La	-	4.53	2.56	1.77
Ce	-	9.68	2.68	3.61
Nd	-	7.49	2.19	4.42
Sm	Sm _{1.7} Ti _{2.3} O ₇	8.41	2.33	3.60
Eu	Eu _{1.5} Ti _{2.5} O ₇	6.13	2.47	2.48
Gd	Gd _{2.3} Ti _{0.7} O ₇	8.83	2.71	3.25
Tb	Tb _{2.03} Ti _{1.97} O ₇	5.65	2.25	2.51
Dy	Dy _{1.95} Ti _{2.05} O ₇	5.28	2.65	1.99
Но	Ho _{1.83} Ti _{2.13} O ₇	4.01	2.65	1.51
Er	-	2.96	0.39	7.56
Tm	Tm _{2.07} Ti _{1.93} O ₇	6.19	2.92	2.12
Yb	Yb _{2.18} Ti _{0.82} O ₇	2.67	0.89	3.01

Table S8 Selected refinement parameters for Ln-TiO₂.

UV-Vis measurements

Figure S21 Solution-state UV-Vis spectra of the Ln-POT compounds (0.033 mg/mL in DCM) and the linear extrapolation of the main absorption peak (O(p) \rightarrow Ti(d) in the Ti_xO_y-framework). The X intercept is taken as an estimate of the HOMO-LUMO gap of the compounds. Errors are estimated to be around ± 0.1 eV.

Figure S22 Solid-state UV-Vis spectra of the Ln-POT compounds and the linear extrapolation of the main absorption peak (O(p) \rightarrow Ti(d) in the Ti_xO_y-framework). The X intercept is taken as an estimate of the HOMO-LUMO gap of the compounds. Errors are estimated to be around ± 0.1 eV.

Figure S23 Solid-state UV-Vis spectra of the decomposed Ln-POT compounds and the linear extrapolation of the main absorption peak $(O(p) \rightarrow Ti(d) \text{ in the } Ti_xO_{y}\text{-} framework)$. The X intercept is taken as an estimate of the band gap of the materials. Errors are estimated to be around $\pm 0.1 \text{ eV}$.

In order to compare the band gap results obtained from linear extrapolation of the UV-Vis absorbance spectra to the literature the data were analysed using a direct band gap semiconductor model (Tauc plots).¹ The results are summarised in Table S9.

Ln	HOMO-LUMO gap solid-state (eV)	Solid-state band gap (eV)
La	2.63	3.08
Ce	2.46	2.13
Nd	3.22	2.81
Sm	3.19	2.83
Eu	3.22	2.94
Gd	3.21	2.90
Tb	3.02	2.44
Dy	3.19	2.87
Но	3.27	2.87
Er	3.22	2.77
Tm	_*	2.84
Yb	3.02	3.09

*not enough sample was obtained.

Table S9 HOMO-LUMO gaps for the molecular Ln-POTs in the solid state and band gaps of the decomposed materials (solid state) obtained from Tauc plots. Errors are estimated to be around ± 0.1 eV.

¹ Y. Lv, J. Cheng, P. D. Matthews, J. P. Holgado, J. Willkomm, M. Leskes, A. Steiner, D. Fenske, T. C. King, P. T. Wood, L. Gan, R. M. Lambert, D. S. Wright, *Dalton Trans.*, 2014, 43, 8679

Figure S24 Band gap determination for the decomposed Ln-TiO₂ materials (solid state) using Tauc plots obtained from plotting $(\alpha hv)^{1/2}$ against the photon energy. Extrapolation of the linear section of the graphs gives the band gap E_g as the x-axis intercept. A similar analysis was carried out for the Ln-POT cages.