Supporting Information for:

Commercially Available Organolithiums as Simple, Effective Precatalysts for Silicon–Nitrogen Heterodehydrocoupling

Matthew B. Reuter, Claire E. Bushey, Diego R. Javier-Jiménez, Rory Waterman*

Department of Chemistry, University of Vermont, Burlington, VT 05405-0125

*E-mail: rory.waterman@uvm.edu

TABLE OF CONTENTS

	Page
S1. GENERAL AND EXPERIMENTAL INFORM	ATION4
S1.1. General Methods	4
S1.2. Abbreviations	5
S1.3. Sample Procedure for Titration with N-Benz	zylbenzamide6
S2. HAMMETT COMPETITION EXPERIMENTS	7
S2.1. General Information	7
S2.2. General Procedure for Hammett Competitio	on Experiments7
S2.3. Data Refinement and Analysis	7
S3. CATALYTIC EXPERIMENTS	9
S3.1. General Procedure	9
S3.2. PhSiH ₃ and 6.0 equiv. of "PrNH ₂	
S3.3. PhSiH ₃ and 6.0 equiv. of $PrNH_2$	
S5.4. PhSiH3 and 6.0 equiv. of 'BuNH2	
S5.5. PhSiH ₃ and 6.0 equiv. PhNH ₂	
S5.6. PhSiH ₃ and 6.0 equiv. of PyNH	
S5.7. PhSiH ₃ and 6.0 equiv. of Et_2NH	
S5.8. PhMeSiH ₂ and 4.0 equiv. of "PrNH ₂	
S5.9. PhMeSiH ₂ and 4.0 equiv. of PrNH ₂	
S5.10. PhMeSiH ₂ and 4.0 equiv. of 'BuNH ₂	
S5.11. PhMeSiH ₂ and 4.0 equiv. of PhNH ₂	
S5.12. PhMeSiH ₂ and 4.0 equiv. of PyNH	
S5.13. PhMeSiH ₂ and 4.0 equiv. of Et_2NH	
S5.14. Ph ₂ SiH ₂ and 4.0 equiv. of "PrNH ₂	
S5.15. Ph ₂ SiH ₂ and 4.0 equiv. of PrNH ₂	
S5.16. Ph_2SiH_2 and 4.0 equiv. of $BuNH_2$	
S5.17. Ph_2SiH_2 and 4.0 equiv. of $PhNH_2$	
S5.18. Ph ₂ SiH ₂ and 4.0 equiv. of PyNH	
S5.19. Ph ₂ SiH ₂ and 4.0 equiv. of Et ₂ NH	
S5.20. PhMe ₂ SiH and 2.0 equiv. of "PrNH ₂	
S5.21. PhMe ₂ SiH and 2.0 equiv. of PrNH ₂	

	S5.22. PhMe ₂ SiH and 2.0 equiv. of PhNH ₂	50
	S5.26. Ph2MeSiH and 2.0 equiv. of Et2NH	53
	S5.27. Ph ₃ SiH and 2.0 equiv. of "PrNH2	55
	S5.28. Ph ₃ SiH and 2.0 equiv. of ⁷ PrNH ₂	57
	S5.29. Ph ₃ SiH and 2.0 equiv. of "BuNH ₂	59
	S5.30. Ph ₃ SiH and 2.0 equiv. of 'BuNH ₂	61
	S5.31. Ph ₃ SiH and 2.0 equiv. of "PeNH ₂	62
	S5.32. Ph ₃ SiH and 2.0 equiv. of "HeNH ₂	64
	S5.33. Ph ₃ SiH and 2.0 equiv. of PhNH ₂	66
	S5.34. Ph ₃ SiH and 2.0 equiv. of PyNH	67
	S5.35. Ph ₃ SiH and 2.0 equiv. of Et ₂ NH	69
	S5.36. (p-MeO-C ₆ H ₄)Ph ₂ SiH and 2.0 equiv. of 'BuNH ₂	70
	S5.37. (p-Me-C ₆ H ₄)Ph ₂ SiH and 2.0 equiv. of 'BuNH ₂	71
	S5.38. (p-F ₃ C-C ₆ H ₄)Ph ₂ SiH and 2.0 equiv. of 'BuNH ₂	73
	S5.39. Et ₃ SiH and 2.0 equiv. of PyNH	74
S4.	EPR ACQUISITION	76
	S4.1. General Procedure	76
	S4.2. EPR Spectrum	76
S5.	WORKUP AND CHARACTERIZATION DETAILS	77
	S5.1. General Workup for Isolating Aminosilanes	77
	S5.2. PhSi(NPy) ₃	78
	S5.3. (p-MeO-C ₆ H ₄)Ph ₂ Si(NH'Bu)	88
	S5.4. (<i>p</i> -Me-C ₆ H ₄)Ph ₂ Si(NH'Bu)	93
	S5.5. (<i>p</i> -F ₃ C-C ₆ H ₄)Ph ₂ Si(NH'Bu)	98
	S5.6. Ph ₃ Si(NEt ₂)	104
S6.	REFERENCES	109

S1. General and Experimental Information

S1.1. General Methods

All manipulations were conducted under a positive pressure of N₂ in either an M. Braun glovebox or using standard Schlenk techniques. Dry, oxygen-free solvents, reagents, and solid support were used throughout experimentation and stored inside the glovebox. Solvents such as *n*-pentane, hexanes, and toluene were degassed with argon, dried by passing through columns of alumina and Q5, and subsequently stored over 3Å molecular sieves. Tetrahydrofuran (THF) was dried over Na/benzophenone, and subsequently distilled and stored in a 1 L PTFE-sealed Strauss flask. Benzene d_6 (C₆D₆) was distilled from CaH₂ and stored over activated 3Å molecular sieves for at least 48 h prior to use. Celite and 3Å molecular sieves were dried between 180-200°C under dynamic vacuum for at least 1 d.

Organolithium reagents were obtained from chemical vendors as solutions: methyl lithium (MeLi) in 1,2-dimethoxyethane, ethyl lithium (EtLi) in dibutyl ether, trimethylsilylmethyl lithium (Me₃SiCH₂Li) in hexanes, *normal*-butyl lithium ('BuLi) in hexanes, *secondary*-butyl lithium ('BuLi) in cyclohexane, *tertiary*-butyl lithium ('BuLi) in pentane, and phenyl lithium (PhLi) in dibutyl ether. For catalysis, these reagents were filtered through Celite inside the glovebox, titrated thrice with *N*benzylbenzamide in 2-3 mL of THF (Section S1.3., *vide infra*), and stored at -40°C prior to use. Me₃SiCH₂Li was isolated as a solid by filtering the received hexanes solution through Celite inside the glovebox and recrystallizing from a saturated solution at -40°C. Amines were distilled under dynamic N₂ from CaH₂ and stored over 3Å molecular sieves. Ph₃SiH₃ and PhMeSiH₂ were distilled under dynamic N₂ and stored over 3Å molecular sieves. Ph₂SiH₂ was distilled under dynamic vacuum and stored over 3Å molecular sieves. Ph₃SiH was recrystallized from hexanes at -40°C. Hexamethylbenzene (C₆Me₆) was sublimed at 150 °C under dynamic vacuum. Reagents such as tertiary silanes (*p*-X-C₆H₄)Ph₂SiH for Hammett competition experiments were synthesized and purified by literature methods.¹

Glassware was cleaned by sequential washings of base (5% KOH/10% PrOH/85% H₂O), acid (10% HNO₃/90% H₂O), and deionized water. Glassware was oven dried at 140 °C for at least 1 h, which was either transferred to the antechamber of an M. Braun glovebox or placed under dynamic vacuum connected to a Schlenk line. Catalytic reactions were conducted in PTFE-sealed J-Young NMR tubes, which were cleaned and dried by the methods mentioned above.

Nuclear magnetic resonance (NMR) spectra were recorded at ambient temperature on a Bruker AXR 500 MHz spectrometer. Electron paramagnetic resonance (EPR) measurements were collected at ambient temperature on a Bruker EMXplus Spectrometer.

S1.2. Abbreviations

Table S1. Common and Uncommon Abbreviations and their Associated Indicators

Abbreviation	Full Name (Formula)	Abbreviation	Full Name (Formula)
Me	Methyl (\varkappa' -CH ₃)	Bu	s-Butyl [z ¹ -CH(Et)(Me)]
Et	Ethyl (*-CH ₂ Me)	'Bu	t-Butyl [x'-C(Me) ₃]
"Pr	<i>n</i> -Propyl (<i>n</i> ¹ -CH ₂ CH ₂ Me)	"Pe	<i>n</i> -Pentyl [\varkappa ¹ -CH ₂ (CH ₂) ₃ Me]
Pr	<i>i</i> -Propyl [\varkappa ^{<i>i</i>} -CH(Me) ₂]	"He	<i>n</i> -Hexyl [<i>x</i> ¹ -CH ₂ (CH ₂) ₄ Me]
"Bu	<i>n</i> -Butyl [\varkappa' -CH ₂ (CH ₂) ₂ Me]	Ph	Phenyl (η^{\prime} -C ₆ H ₅)
Bu	<i>i</i> -Butyl [<i>*</i> ¹ -CH ₂ CH(Me) ₂]	NPy	Pyrrolidine (η'-NC4H8)

S1.3. Sample Procedure for Titration with N-Benzylbenzamide

In the glovebox, N-Benzylbenzamide was added to a 20 mL glass scintillation vial equipped with a microstir bar and dissolved in 2-3 mL of THF. RLi was slowly added via a 1 mL syringe until the solution turned a consistent dark purple. The molarity of RLi was found using Eq. 1. These reactions were run in triplicate.

$$M = \frac{\text{moles of } N - \text{Benzylbenzamide}}{L \text{ of added } RLi} \tag{1}$$

Entry	RLi	<i>M</i> from Vendor	M after Filtration
1	Me	3.10	2.80
2	Et	1.70	1.50
3	Me ₃ SiCH ₂	0.70	[a]
4	"Bu	2.40	2.50 ^[b]
5	Bu	1.30	1.40 ^[b]
6	′Bu	1.60	1.50
7	Ph	2.00	1.70

Table S2. Titration results for lithiated reagents

^[a]Isolated as a solid (*vide supra*). ^[b]The increased M of these solutions is attributed to the loss of stock solution solvent under dynamic vacuum during filtration.

S2. Hammett Competition Experiments

S2.1. General Information

Stock solutions of $(p-X-C_6H_4)Ph_2SiH$ (X = CF₃, H, Me, OMe) were prepared inside the glovebox to a concentration of 1.0 M in benzene-*d*₆. These solutions were stored at -40 °C and unfrozen only immediately prior to the start of experimentation.

S2.2. General Procedure for Hammett Competition Experiments

In the glovebox, Ph₃SiH (188.5 μ L, 1.8 × 10⁻¹ mmol, 1.0 M in benzene-*d*₆), (*p*-X-C₆H₄)Ph₂SiH (188.5 μ L, 1.8 × 10⁻¹ mmol, 1.0 M in benzene-*d*₆), C₆Me₆ (52.5 μ L, 0.4 M in benzene-*d*₆) and 'BuNH₂ (79.5 μ L, 7.5 × 10⁻¹ mmol) were added to 0.5 mL of benzene-*d*₆ in a 20 mL glass scintillation. After the addition of **1** (14.5 μ L, 3.7 × 10⁻² mmol, 11.1 mol %, 2.9 M in hexanes), the effervescent solution was quickly transferred to a PTFE-sealed J-Young NMR tube via a glass pipette. The solution was allowed to react for 1 h at ambient temperature before ¹H NMR spectra were acquired. These reactions were run in triplicate.

S2.3. Data Refinement and Analysis

Spectra were referenced to an internal standard of C₆Me₆ (i.e., $\delta = 2.13$). Integrations were determined from diagnostic 'Bu peaks, with Ph₃Si(NH'Bu) normalized to 1.00. The full listing of raw and refined data is presented in Table S2.1, where red values indicate omitted data points. Logarithmic mean values of k_{H}/k_{D} were plotted against the substituent constant for the corresponding *p*-substituted silane, which were obtained from the literature.²

		k _x /k _H			$x_{\rm H}$ log(k _X /k _H)				
X	Hammett Parameter	1	2	3	1	2	3	Mean	σ
CF ₃	0.54	2.89	3.60	3.49	0.45	0.56	0.54	1.10	0.01
Η	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00
Me	-0.17	0.98	0.99	0.99	-0.01	0.00	0.00	-0.02	0.00
OMe	-0.27	0.81	0.83	0.85	-0.09	-0.08	-0.07	-0.24	0.01

Table S2.1. Data for Hammett analysis between Ph₃SiH and (*p*-X-C₆H₄)Ph₂SiH

S3. Catalytic Experiments

S3.1. General Procedure

In an M. Braun glovebox, a 20 mL scintillation vial was charged with 0.5 mL of benzene- d_6 , followed by silane, amine, and **1**. The vigorously bubbling solution was quickly transferred to a PTFE-sealed J-Young NMR tube via glass pipette and left to react at ambient temperature for 1 h, unless otherwise specified.

Icon	Meaning	Note(s)				
•	Aminosilane	Desired Product				
•	Silane	Reagent				
•	Hydrogen Gas	By-product				
	C_6Me_6	Internal Standard				
▼	Benzene-d ₆	Solvent (i.e., residual C ₆ H ₆)				
‡	Borosilicate Glass Peak	From NMR tube				

Table 3.1. List of icons and identifiers

S3.2. PhSiH₃ and 6.0 equiv. of "PrNH₂

PhSiH₃ (46.5 μ L, 3.7 × 10⁻¹ mmol), "PrNH₂ (186.0 μ L, 22.6 × 10⁻¹ mmol, 6.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 μ L, 0.4 M in benzene-*d*₆). Complete consumption of PhSiH₃ was observed after 1 h, as determined by the absence of the Si*H* peak at δ = 4.22 in the ¹H NMR spectrum. The appearance of a diagnostic peak at δ = 2.82 in the ¹H NMR spectrum indicated 66% conversion to PhSi(NH"Pr)₃ after 1 h at ambient temperature. Additional peaks contributed to the lowered conversion. Spectra were consistent with previous reports of this compound.³

Figure S3.1. ¹H NMR spectrum of the reaction between PhSiH₃ and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.2. ²⁹Si{¹H} NMR spectrum of the reaction between PhSiH₃ and "PrNH₂ catalyzed by **1** in benzene- d_6 after 24 h.

S3.3. PhSiH₃ and 6.0 equiv. of [']PrNH₂

PhSiH₃ (46.5 μ L, 3.7 × 10⁻¹ mmol), 'PrNH₂ (194.0 μ L, 22.6 × 10⁻¹ mmol, 6.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 μ L, 0.4 M in benzene-*d*₆). Complete consumption of PhSiH₃ was observed after 1 h. The appearance of a diagnostic septet centered at δ = 3.24 in the ¹H NMR spectrum indicated 85% conversion to PhSi(NH'Pr)₃ after 1 h at ambient temperature. The appearance of additional 'Pr peaks, which are likely oligomeric products, contributed to the lowered conversion. Spectra were consistent with previous reports of this compound.⁴

Figure S3.3. ¹H NMR spectrum of the reaction between PhSiH₃ and PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.4. ²⁹Si{¹H} NMR spectrum of the reaction between PhSiH₃ and ⁱPrNH₂ catalyzed by **1** in benzene-*d*₆ after 1 h.

S5.4. PhSiH₃ and 6.0 equiv. of 'BuNH₂

PhSiH₃ (46.5 μ L, 3.7 × 10⁻¹ mmol), 'BuNH₂ (238.0 μ L, 22.6 × 10⁻¹ mmol, 6.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhSiH₃ was observed after 1 h. The appearance of a diagnostic triplet centered at δ = 5.41 in the ¹H NMR spectrum indicated 98% conversion to PhSiH(NH'Bu)₂ after 1 h at ambient temperature. An additional peak in the ¹H-²⁹Si{¹H} NMR HSQC spectrum was observed, which was not consistent with PhSiH₂NH'Bu,³ (PhSiH₂)₂N'Bu,⁴ or [PhHSi- μ -(N'Bu)]₂.⁵ Spectra were consistent with previous reports of this compound.^{3,6}

Figure S3.5. ¹H NMR spectrum of the reaction between PhSiH₃ and 'BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.6. ${}^{1}\text{H}-{}^{29}\text{Si}\{{}^{1}\text{H}\}$ HSQC NMR spectrum of the reaction between PhSiH₃ and 'BuNH₂ catalyzed by **1** in benzene-*d*₆ after 1 h.

S5.5. PhSiH₃ and 6.0 equiv. PhNH₂

PhSiH₃ (46.5 μ L, 3.7 × 10⁻¹ mmol), PhNH₂ (204.5 μ L, 22.6 × 10⁻¹ mmol, 6.0 equiv.), and **1** (16.5 μ L, 3.7 × 10⁻² mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhSiH₃ was observed after 1 h. The bis- and tris(aminosilane) products PhSiH(NHPh)₂ and PhSi(NHPh)₃ were formed in approximately 90% and 10% conversion, respectively. A peak at δ = -40.43 in the ¹H-²⁹Si{¹H} HSQC NMR spectrum, which is indistinguishable in the ¹H NMR spectrum, may be consistent with residual PhSiH₂(NHPh). Spectra were consistent with previous reports of these compounds.^{6,7}

Figure S3.7. ¹H NMR spectrum of the reaction between PhSiH₃ and PhNH₂ catalyzed by **1** in benzene- d_6 after 1 h. Residual solvent was buried by product aryl peaks.

Figure S3.8. ²⁹Si{¹H} NMR spectrum of the reaction between PhSiH₃ and PhNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.9. ²⁹Si{¹H} NMR spectrum of the reaction between PhSiH₃ and PhNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.6. PhSiH₃ and 6.0 equiv. of PyNH

PhSiH₃ (46.5 μ L, 3.7 × 10⁻¹ mmol), PyNH (186.0 μ L, 22.6 × 10⁻¹ mmol, 6.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhSiH₃ was observed after 0.5 h. The appearance of a multiplet centered at δ = 3.10 in the ¹H NMR spectrum indicated 100% conversion to PhSi(NPy)₃ after 0.5 h at ambient temperature.

Figure S3.10. ¹H NMR spectrum of the reaction between PhSiH₃ and PyNH catalyzed by **1** in benzene- d_6 after 0.5 h.

S5.7. PhSiH₃ and 6.0 equiv. of Et₂NH

PhSiH₃ (46.5 μ L, 3.7 × 10⁻¹ mmol), Et₂NH (234.0 μ L, 22.6 × 10⁻¹ mmol, 6.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhSiH₃ was observed after 1 h. The appearance of two diagnostic quartets, one centered between δ = 2.91 and δ = 2.90 and the second centered between δ = 2.81 and δ = 2.80 in the ¹H NMR spectrum, indicated 52% conversion to PhSiH(NEt₂)₂ and 48% conversion to PhSiH₂(NEt₂) after 1 h at ambient temperature. The reaction was subsequently ended, due to the cessation of gas evolution. Spectra were consistent with previous reports of these compounds.^{6,8}

Figure S3.11. ¹H NMR spectrum of the reaction between PhSiH₃ and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.12. ²⁹Si{¹H} NMR spectrum of the reaction between PhSiH₃ and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.13. ${}^{1}H{}^{-29}Si\{{}^{1}H\}$ HSQC NMR spectrum of the reaction between PhSiH₃ and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h.

S5.8. PhMeSiH₂ and 4.0 equiv. of "PrNH₂

PhMeSiH₂ (51.5 µL, 3.7×10^{-1} mmol), "PrNH₂ (123.5 µL, 15.0×10^{-1} mmol, 4.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of PhMeSiH₂ was observed after 1 h, as determined by the disappearance of the Si*H* peak at δ = 4.46 in the ¹H NMR spectrum. The appearance of a diagnostic peak at δ = 2.76 in the ¹H NMR spectrum, and a single peak in the ²⁹Si{¹H} NMR spectrum at δ = -17.17, indicated 100% conversion to PhMeSi(NH"Pr)₂ after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.⁷

Figure S3.14. ¹H NMR spectrum of the reaction between PhMeSiH₂ and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.15. ²⁹Si{¹H} NMR spectrum of the reaction between PhMeSiH₂ and "PrNH₂ catalyzed by 1 in benzene- d_6 after 1 h.

S5.9. PhMeSiH₂ and 4.0 equiv. of ^{*i*}PrNH₂

PhMeSiH₂ (51.5 µL, 3.7×10^{-1} mmol), ⁱPrNH₂ (128.5 µL, 15.0×10^{-1} mmol, 4.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of PhMeSiH₂ was observed after 1 h. The appearance of a diagnostic multiplet centered at $\delta = 3.16$ in the ¹H NMR spectrum, and a single peak at $\delta = -20.21$ in the ²⁹Si{¹H} NMR spectrum, indicated 100% conversion to PhMeSi(NHⁱPr)₂ after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.^{6, 9}

Figure S3.16. ¹H NMR spectrum of the reaction between PhMeSiH₂ and $PrNH_2$ catalyzed by **1** in benzene-*d*₆ after 1 h.

Figure S3.17. ²⁹Si{¹H} NMR spectrum of the reaction between PhMeSiH₂ and $PrNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

S5.10. PhMeSiH₂ and 4.0 equiv. of 'BuNH₂

PhMeSiH₂ (52.0 μ L, 3.7 × 10⁻¹ mmol), 'BuNH₂ (159.5 μ L, 15.0 × 10⁻¹ mmol, 4.0 equiv.), and **1** (16.5 μ L, 3.7 × 10⁻² mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ (52.5 μ L, 0.4 M in benzene-*d*₆). Complete consumption of PhMeSiH₂ was observed after 1 h. The appearance of a quintet centered at δ = 1.08, and a diagnostic signal at δ = -21.50 in the ¹H-²⁹Si{¹H} HSQC NMR spectrum, indicated at least 96% conversion to PhMeSiH(NH'Bu) after 1 h at ambient temperature. The appearance of two additional Me peaks contributed to lower aminosilane conversions. Spectra were consistent with previous reports of this compound.⁷

Figure S3.18. ¹H NMR spectrum of the reaction between PhMeSiH₂ and 'BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.19. ${}^{1}\text{H}{}^{29}\text{Si}{}^{1}\text{H}$ HSQC NMR spectrum of the reaction between PhMeSiH₂ and 'BuNH₂ catalyzed by **1** in benzene-*d*₆ after 1 h.

S5.11. PhMeSiH₂ and 4.0 equiv. of PhNH₂

PhMeSiH₂ (52.0 µL, 3.7×10^{-1} mmol), PhNH₂ (137.0 µL, 15.0×10^{-1} mmol, 4.0 equiv.), and **1** (16.5 µL, 3.7×10^{-2} mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene- d_6 in the presence of C₆Me₆ (52.5 µL, 0.4 M in benzene- d_6). Incomplete consumption of PhMeSiH₂ was observed after 1 h. Based on the relative integrations of product peak at $\delta = 0.29$ to reagent peak at $\delta = 0.20$, PhMeSiH(NHPh) was formed in 53% conversion after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.⁷

Figure S3.20. ¹H NMR spectrum of the reaction between PhMeSiH₂ and PhNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.21. ²⁹Si{¹H} NMR spectrum of the reaction between PhMeSiH₂ and PhNH₂ catalyzed by **1** in benzene- d_6 after 1 h. The peak at δ = -35.99 is PhMeSiH₂.

S5.12. PhMeSiH₂ and 4.0 equiv. of PyNH

PhMeSiH₂ (52.0 μ L, 3.7 × 10⁻¹ mmol), PyNH (159.5 μ L, 15.0 × 10⁻¹ mmol, 4.0 equiv.), and **1** (16.5 μ L, 3.7 × 10⁻² mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhMeSiH₂ was observed after 0.5 h. The appearance of a diagnostic multiplet centered at δ = 3.01 in the ¹H NMR spectrum indicated 100% conversion to PhMeSi(NPy)₂ after 0.5 h at ambient temperature.

Figure S3.22. ¹H NMR spectrum of the reaction between PhMeSiH₂ and PyNH catalyzed by **1** in benzene- d_6 after 0.5 h.

S5.13. PhMeSiH₂ and 4.0 equiv. of Et₂NH

PhMeSiH₂ (51.5 µL, 3.7×10^{-1} mmol), Et₂NH (155.0 µL, 15.0×10^{-1} mmol, 4.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhMeSiH₂ was observed after 1 h. The appearance of a diagnostic quartet centered between $\delta = 2.81$ and $\delta = 2.80$ in the ¹H NMR spectrum, and a single peak at $\delta = -11.19$ in the ²⁹Si{¹H} NMR spectrum, indicated 100% conversion to PhMeSiH(NEt₂) after 1 h at ambient temperature. The reaction was subsequently ended, due to the cessation of gas evolution. Spectra were consistent with previous reports of this compound.⁶

Figure S3.23. ¹H NMR spectrum of the reaction between PhMeSiH₂ and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.24. ²⁹Si NMR spectrum of the reaction between PhMeSiH₂ and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h.

S5.14. Ph₂SiH₂ and 4.0 equiv. of "PrNH₂

Ph₂SiH₂ (70.0 µL, 3.7×10^{-1} mmol), "PrNH₂ (123.5 µL, 15.0×10^{-1} mmol, 4.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of Ph₂SiH₂ was observed after 1 h, as determined by the disappearance of the Si*H* peak at $\delta = 5.08$ in the ¹H NMR spectrum. The appearance of a diagnostic quartet centered between $\delta = 2.84$ and $\delta = 2.85$ in the ¹H NMR spectrum, and a single peak at $\delta = -25.50$ in the ²⁹Si{¹H} NMR spectrum, indicated 99% conversion to Ph₂Si(NH"Pr)₂ after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.⁷

Figure S3.25. ¹H NMR spectrum of the reaction between Ph_2SiH_2 and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.26. ²⁹Si{¹H} NMR spectrum of the reaction between Ph_2SiH_2 and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.15. Ph₂SiH₂ and 4.0 equiv. of [']PrNH₂

Ph₂SiH₂ (70.5 μ L, 3.7 × 10⁻¹ mmol), PrNH₂ (130.0 μ L, 15.0 × 10⁻¹ mmol, 4.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 μ L, 0.4 M in benzene-*d*₆). Complete consumption of Ph₂SiH₂ was observed after 1 h. The appearance of a diagnostic multiplet centered at δ = 3.27 in the ¹H NMR spectrum, and a single peak at δ = -28.44 in the ²⁹Si{¹H} NMR spectrum, indicated 100% conversion to Ph₂Si(NHPr)₂ after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.⁶

Figure S3.27. ¹H NMR spectrum of the reaction between Ph_2SiH_2 and $PrNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.28. ²⁹Si{¹H} NMR spectrum of the reaction between Ph_2SiH_2 and $PrNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

S5.16. Ph₂SiH₂ and 4.0 equiv. of 'BuNH₂

Ph₂SiH₂ (70.0 μ L, 3.7 × 10⁻¹ mmol), 'BuNH₂ (158.0 μ L, 15.0 × 10⁻¹ mmol, 4.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻¹ mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of Ph₂SiH₂ was observed after 1 h. After 1 h at ambient temperature, Ph₂SiH(NH'Bu) and Ph₂Si(NH'Bu)₂ were formed in approximately 97% and 3% conversion. Spectra were consistent with previous reports of these compounds.^{7, 10}

Figure S3.29. ¹H NMR spectrum of the reaction between Ph_2SiH_2 and 'BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.30. ²⁹Si{¹H} NMR spectrum of the reaction between Ph_2SiH_2 and $'BuNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.31. ${}^{1}\text{H}{}^{29}\text{Si}\{{}^{1}\text{H}\}$ HSQC NMR spectrum of the reaction between Ph₂SiH₂ and 'BuNH₂ catalyzed by **1** in benzene-*d*₆ after 1 h.

S5.17. Ph₂SiH₂ and 4.0 equiv. of PhNH₂

Ph₂SiH₂ (70.5 μ L, 3.7 × 10⁻¹ mmol), PhNH₂ (137.5 μ L, 15.2 × 10⁻¹ mmol, 4.0 equiv.), and **1** (16.5 μ L, 3.7 × 10⁻¹ mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of Ph₂SiH₂ was observed after 1 h. After 1 h at ambient temperature, Ph₂SiH(NHPh) and Ph₂Si(NHPh)₂ were formed in approximately 99% and 1% conversion. Spectra were consistent with previous reports of these compounds.^{6,7}

Figure S3.32. ¹H NMR spectrum of the reaction between Ph_2SiH_2 and $PhNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.33. ²⁹Si{¹H} NMR spectrum of the reaction between Ph_2SiH_2 and $PhNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.34. ${}^{1}\text{H}-{}^{29}\text{Si}\{{}^{1}\text{H}\}$ HSQC NMR spectrum of the reaction between Ph₂SiH₂ and PhNH₂ catalyzed by **1** in benzene-*d*₆ after 1 h.

S5.18. Ph₂SiH₂ and 4.0 equiv. of PyNH

Ph₂SiH₂ (70.0 μ L, 3.7 × 10⁻¹ mmol), PyNH (123.5 μ L, 15.0 × 10⁻¹ mmol, 4.0 equiv.), and **1** (15.0 μ L, 3.7 × 10⁻² mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of Ph₂SiH₂ was observed after 0.5 h. The appearance of a diagnostic multiplet centered at δ = 3.10 in the ¹H NMR spectrum indicated 100% conversion to Ph₂Si(NPy)₂ after 0.5 h at ambient temperature.

Figure S3.35. ¹H NMR spectrum of the reaction between Ph_2SiH_2 and PyNH catalyzed by 1 in benzene- d_6 after 0.5 h.

S5.19. Ph₂SiH₂ and 4.0 equiv. of Et₂NH

Ph₂SiH₂ (70.0 μ L, 3.7 × 10⁻¹ mmol), Et₂NH (155.5 μ L, 15.0 × 10⁻¹ mmol, 4.0 equiv.), and 1 (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Incomplete consumption of Ph₂SiH₂ was observed after 1 h, as determined by the presence of the Si*H* peak at δ = 5.02 in the ¹H NMR spectrum. The appearance of a diagnostic quartet centered between δ = 2.89 and δ = 2.88 in the ¹H NMR spectrum indicated 69% conversion to Ph₂SiH(NEt₂) after 1 h at ambient temperature. The reaction was subsequently ended, due to the cessation of gas evolution. Spectra were consistent with previous reports of this compound.⁶

Figure S3.36. ¹H NMR spectrum of the reaction between Ph_2SiH_2 and Et_2NH catalyzed by **1** in benzene-*d*₆ after 1 h. Residual solvent is buried by aryl peaks.

Figure S3.37. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₂SiH₂ and Et₂NH catalyzed by **1** in benzene- d_{δ} after 1 h. The peak at $\delta = -33.72$ is Ph₂SiH₂.

S5.20. PhMe₂SiH and 2.0 equiv. of "PrNH₂

PhMe₂SiH (57.5 µL, 3.7×10^{-1} mmol), "PrNH₂ (61.5 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhMe₂SiH was observed after 1 h, as determined by the disappearance of the Si*H* peak at $\delta = 4.60$ in the ¹H NMR spectrum. The appearance of a broad, quartet centered between $\delta = 2.60$ and $\delta = 2.59$ in the ¹H NMR spectrum indicated 100% conversion to PhMe₂Si(NH"Pr) after 1 h at ambient temperature.

Figure S3.38. ¹H NMR spectrum of the reaction between PhMe₂SiH and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.21. PhMe₂SiH and 2.0 equiv. of ^{*i*}PrNH₂

PhMe₂SiH (57.5 μ L, 3.7 × 10⁻¹ mmol), PrNH₂ (64.0 μ L, 7.5 × 10⁻¹ mmol, 2.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol%) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of PhMe₂SiH was observed after 1 h. The appearance of a diagnostic septet centered δ = 2.93 in the ¹H NMR spectrum, and a single peak at δ = -6.41 in the ²⁹Si{¹H} NMR spectrum, indicated 100% conversion to PhMe₂Si(NHPr) after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.^{9, 11}

Figure S3.39. ¹H NMR spectrum of the reaction between PhMe₂SiH and $PrNH_2$ catalyzed by **1** in benzene-*d*₆ after 1 h.

Figure S3.40. ²⁹Si{¹H} NMR spectrum of the reaction between PhMe₂SiH and $PrNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

S5.22. PhMe₂SiH and 2.0 equiv. of PhNH₂

PhMe₂SiH (58.0 μ L, 3.7 × 10⁻¹ mmol), PhNH₂ (68.5 μ L, 7.5 × 10⁻¹ mmol, 2.0 equiv.), and **1** (16.5 μ L, 3.7 × 10⁻² mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h, no reaction occurred.

Figure S3.41. ¹H NMR spectrum of the reaction between PhMe₂SiH and PhNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.24. PhMe₂SiH and 2.0 equiv. of Et₂NH

PhMe₂SiH (57.5 μ L, 3.7 × 10⁻¹ mmol), Et₂NH (77.5 μ L, 7.5 × 10⁻¹ mmol, 2.0 equiv.), and **1** (14.5 μ L, 3.7 × 10⁻² mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Incomplete consumption of PhMe₂SiH was observed after 1 h, as determined by the presence of the SiH peak at δ = 4.59 in the ¹H NMR spectrum. The appearance of a diagnostic quartet centered between δ = 2.78 and δ = 2.77 in the ¹H NMR spectrum indicated 48% conversion to PhMe₂Si(NEt₂) after 1 h at ambient temperature. The reaction was ended after 1 h, due to the cessation of gas evolution. Spectroscopic data was consistent with previous reports of this compound.¹²

Figure S3.42. ¹H NMR spectrum of the reaction between PhMe₂SiH and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h. Residual solvent is buried by aryl peaks.

Figure S3.43. ²⁹Si{¹H} NMR spectrum of the reaction between PhMe₂SiH and Et₂NH catalyzed by **1** in benzene- d_6 after 1 h.

S5.26. Ph₂MeSiH and 2.0 equiv. of Et₂NH

Ph₂MeSiH (75.0 µL, 3.7×10^{-1} mmol), Et₂NH (78.0 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol%) were reacted together in 0.5 mL of benzene-*d*₆. Incomplete consumption of Ph₂MeSiH was observed after 1 h, as determined by the presence of the Si*H* peak at $\delta = 5.10$ in the ¹H NMR spectrum. The appearance of a multiplet centered between $\delta = 2.86$ and $\delta = 2.85$ in the ¹H NMR spectrum indicated 57% conversion to Ph₂MeSi(NEt₂) after 1 h at ambient temperature, which was supported by the presence of a peak at $\delta = -7.15$ in the ²⁹Si{¹H} NMR spectrum. The reaction was ended after 1 h, due to the slow progression of gas evolution. Spectroscopic data was consistent with previous reports of this compound.^{13, 14}

Figure S3.44. ¹H NMR spectrum of the reaction between Ph_2MeSiH and Et_2NH catalyzed by **1** in benzene-*d*₆ after 1 h. Residual solvent is buried by aryl peaks.

Figure S3.45. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₂MeSiH and Et₂NH catalyzed by 1 in benzene- d_6 after 1 h.

S5.27. Ph₃SiH and 2.0 equiv. of "PrNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), "PrNH₂ (62.0 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and 1 (14.5 µL, 3.7 $\times 10^{-2}$ mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of Ph₃SiH was observed after 1 h, as determined by the disappearance of the Si*H* peak at $\delta = 5.69$ in the ¹H NMR spectrum. The appearance of a diagnostic quartet centered between $\delta = 2.80$ and $\delta = 2.79$, and a single peak in the ²⁹Si {¹H} NMR spectrum at $\delta = -16.46$, indicated 100% conversion to Ph₃Si(NH"Pr) after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.⁶

δ (ppm)

Figure S3.46. ¹H NMR spectrum of the reaction between Ph_3SiH and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.47. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₃SiH and "PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.28. Ph₃SiH and 2.0 equiv. of [']PrNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), ⁷PrNH₂ (64.5 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of Ph₃SiH was observed after 1 h. The appearance of a diagnostic septet centered between at $\delta = 3.15$ -3.14 in the ¹H NMR spectrum, and a single peak in the ²⁹Si{¹H} NMR spectrum at $\delta = -17.85$, indicated 100% conversion to Ph₃Si(NHPr) after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.⁶

Figure S3.48. ¹H NMR spectrum of the reaction between Ph_3SiH and $PrNH_2$ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.49. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₃SiH and PrNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.29. Ph₃SiH and 2.0 equiv. of "BuNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), "BuNH₂ (75.0 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and 1 (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of Ph₃SiH was observed after 1 h. The appearance of a diagnostic quartet centered between $\delta = 2.86$ and $\delta = 2.84$ in the ¹H NMR spectrum, and a single peak in the ²⁹Si{¹H} NMR spectrum at $\delta = -16.50$, indicated 100% conversion to Ph₃Si(NH"Bu) after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.¹⁵

Figure S3.50. ¹H NMR spectrum of the reaction between Ph_3SiH and "BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.51. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₃SiH and "BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.30. Ph₃SiH and 2.0 equiv. of 'BuNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), 'BuNH₂ (79.5 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (15.0 µL, 3.7 $\times 10^{-2}$ mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h at ambient temperature, 80% conversion to Ph₃Si(NH'Bu) was observed. The reaction was subsequently run to completion.

Figure S3.52. ¹H NMR spectrum of the reaction between Ph₃SiH and 'BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.31. Ph₃SiH and 2.0 equiv. of "PeNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), "PeNH₂ (87.5 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and 1 (14.5 µL, 3.7 $\times 10^{-2}$ mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of Ph₃SiH was observed after 1 h. The appearance of a diagnostic quartet centered between $\delta = 2.86$ and $\delta = 2.84$ in the ¹H NMR spectrum, and a single peak in the ²⁹Si{¹H} NMR spectrum at $\delta = -16.51$, indicated 100% conversion to Ph₃Si(NH"Pe) after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.¹⁶

Figure S3.53. ¹H NMR spectrum of the reaction between Ph_3SiH and "PeNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.54. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₃SiH and "PeNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.32. Ph₃SiH and 2.0 equiv. of ⁿHeNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), "HeNH₂ (99.0 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (14.5 µL, 3.7×10^{-2} mmol, 2.6 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆ in the presence of C₆Me₆ standard (52.5 µL, 0.4 M in benzene-*d*₆). Complete consumption of Ph₃SiH was observed after 1 h. The appearance of a diagnostic quartet centered between $\delta = 2.87$ and $\delta = 2.85$ in the ¹H NMR spectrum, and a single peak in the ²⁹Si{¹H} NMR spectrum at $\delta = -16.50$, indicated 100% conversion to Ph₃Si(NH"He) after 1 h at ambient temperature. Spectra were consistent with previous reports of this compound.¹⁶

Figure S3.55. ¹H NMR spectrum of the reaction between Ph_3SiH and "HeNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

Figure S3.56. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₃SiH and "HeNH₂ catalyzed by **1** in benzene- d_6 after 1 h.

S5.33. Ph₃SiH and 2.0 equiv. of PhNH₂

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), PhNH₂ (68.0 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (16.5 µL, 3.7 $\times 10^{-2}$ mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h, no reaction occurred.

Figure S3.57. ¹H NMR spectrum of the reaction between Ph_3SiH and $PhNH_2$ catalyzed by 1 in benzene- d_6 after 1 h. The peak at -5.69 is Ph_3SiH .

S5.34. Ph₃SiH and 2.0 equiv. of PyNH

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), PyNH (62.0 µL, 7.5×10^{-1} mmol, 2.00 equiv.), and **1** (15.0 µL, 3.7×10^{-2} mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. Complete consumption of Ph₃SiH was observed after 0.5 h. The appearance of a diagnostic multiplet centered at $\delta = 3.10$ in the ¹H NMR spectrum indicated 100% conversion to Ph₃Si(NPy) after 0.5 h at ambient temperature. Spectra were consistent with previous reports of this compound.¹⁷

Figure S3.58. ¹H NMR spectrum of the reaction between Ph₃SiH and PyNH catalyzed by 1 in benzene- d_6 after 0.5 h.

Figure S3.59. ²⁹Si{¹H} NMR spectrum of the reaction between Ph₃SiH and PyNH catalyzed by **1** in benzene- d_6 after 1 h.

S5.35. Ph₃SiH and 2.0 equiv. of Et₂NH

Ph₃SiH (98.0 mg, 3.7×10^{-1} mmol), Et₂NH (78.0 µL, 7.5×10^{-1} mmol, 2.0 equiv.), and **1** (15.0 µL, 3.7 $\times 10^{-2}$ mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h at ambient temperature, 88% conversion to Ph₃Si(NEt₂). The reaction was run to completion.

t = 1 h $(23.01)^{2.01}$ $(23.02)^{2.01}$ $(23.02)^{2.01}$ $(23.02)^{2.01}$

Figure S3.60. ¹H NMR spectrum of the reaction between Ph_3SiH and Et_2NH catalyzed by 1 in benzene- d_6 after 1 h.

S5.36. (p-MeO-C₆H₄)Ph₂SiH and 2.0 equiv. of 'BuNH₂

(p-MeO-C₆H₄)Ph₂SiH (116.6 mg, 4.0 × 10⁻¹ mmol), 'BuNH₂ (84.5 µL, 8.0 × 10⁻¹ mmol, 2.0 equiv.), and **1** (16.0 µL, 4.0 × 10⁻² mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene- d_6 . After 1 h at ambient temperature, (p-MeO-C₆H₄)Ph₂Si(NH'Bu) was formed in approximately 72% conversion. The reaction was subsequently run to completion.

Figure S3.61. ¹H NMR spectrum of the reaction between (p-MeO-C₆H₄)Ph₂SiH and 'BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h. Residual solvent is buried by aryl peaks.

S5.37. (p-Me-C₆H₄)Ph₂SiH and 2.0 equiv. of 'BuNH₂

 $(p-Me-C_6H_4)Ph_2SiH$ (95.0 mg, 3.5×10^{-1} mmol), 'BuNH₂ (72.5 µL, 7.0×10^{-1} mmol, 2.0 equiv.), and 1 (14.0 µL, 3.5×10^{-2} mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzened₆. After 1 h at ambient temperature, (p-Me-C₆H₄)Ph₂Si(NH'Bu) was formed in approximately 77% conversion. The reaction was subsequently run to completion.

Figure S3.62. ¹H NMR spectrum of the reaction between (p-Me-C₆H₄)Ph₂SiH and 'BuNH₂ catalyzed by **1** in benzene- d_6 after 1 h. Residual solvent is buried by aryl peaks.

Figure S3.63. ¹H NMR spectrum of the reaction between (*p*-Me-C₆H₄)Ph₂SiH and 'BuNH₂ catalyzed

by **1** in benzene- d_6 after 24 h.
S5.38. (p-F₃C-C₆H₄)Ph₂SiH and 2.0 equiv. of 'BuNH₂

 $(p-F_3C-C_6H_4)Ph_2SiH$ (146.1 mg, 4.4 × 10⁻¹ mmol), 'BuNH₂ (93.5 µL, 8.8 × 10⁻¹ mmol, 2.0 equiv.), and 1 (18.0 µL, 4.5 × 10⁻² mmol, 2.5 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h at ambient temperature, (*p*-F₃C-C₆H₄)Ph₂Si(NH'Bu) was formed in approximately 54% conversion. The reaction was subsequently run to completion.

δ (ppm)

Figure S3.64. ¹H NMR spectrum of the reaction between (*p*-F₃C-C₆H₄)Ph₂SiH and 'BuNH₂ catalyzed

by **1** in benzene- d_6 after 1 h. Residual solvent is buried by aryl peaks.

S5.39. Et₃SiH and 2.0 equiv. of PyNH

Et₃SiH (60.5 μ L, 44.0 mg, 3.7 × 10⁻¹ mmol), PyNH (62.5 μ L, 7.6 × 10⁻¹ mmol, 2.0 equiv.), and 1 (16.5 μ L, 3.7 × 10⁻² mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h at ambient temperature, Et₃Si(NPy) was formed in approximately 93% conversion.

Figure S3.65. ¹H NMR spectrum of the reaction between Et_3SiH and PyNH catalyzed by 1 in benzene- d_6 after 1 h.

S5.40. Et₃SiH and 2.0 equiv. of Ph₂NH

Et₃SiH (79.0 μ L, 4.9 × 10⁻¹ mmol), Ph₂NH (168.0 mg, 9.9 × 10⁻¹ mmol, 2.0 equiv.), and **1** (15.0 μ L, 4.9 × 10⁻² mmol, 2.3 M in hexanes, 10.0 mol %) were reacted together in 0.5 mL of benzene-*d*₆. After 1 h at ambient temperature, no reaction occurred.

Figure S3.66. ¹H NMR spectrum of the reaction between Et₃SiH and Ph₂NH catalyzed by **1** in benzene- d_{δ} after 1 h. The peak centered at $\delta = 3.87$ is Et₃SiH.

S4. EPR Acquisition

S4.1. General Procedure

Ph₃SiH (96.0 mg, 3.7×10^{-1} mmol), 'BuNH₂ (77.0 µL, 7.4×10^{-1} mmol, 2.0 equiv.), and **1** (14.0 µL, 3.7 $\times 10^{-2}$ mmol) were reacted together in a PTFE-sealed J-Young Quartz NMR tube. After 5 min, EPR measurements were acquired at ambient temperature.

S4.2. EPR Spectrum

Figure S4.1. EPR Spectrum of the reaction between Ph₃SiH and 2.0 equiv. of 'BuNH₂ with 1

Conditions: microwave frequency = 98.5×10^{-1} GHz; microwave power = 632.5×10^{-3} mW; modulation amplitude = 1.0 G; modulation frequency = 100.0 kHz; time constant = 1.0×10^{-2} ms; conversion time = 90.0 ms

S5. Workup and Characterization Details

S5.1. General Workup for Isolating Aminosilanes

After completion of the reaction, the desired aminosilane was purified either by vacuum distillation or vacuum distillation.

For aminosilanes $PhSi(NPy)_3$, (*p*-MeO-C₆H₄)Ph₂Si(NH'Bu), (*p*-Me-C₆H₄)Ph₂Si(NH'Bu), and (*p*-F₃C-C₆H₄)Ph₂Si(NH'Bu), the NMR tube was opened to air, the solution added to a 20 mL scintillation vial to quench reactive intermediates, and the contents subsequently transferred to a W-shaped, bulb-to-bulb distillation apparatus via glass pipette. The contents were carefully reduced under dynamic vacuum to afford an oil, which was subsequently distilled over, using consistent and even heating from a heat gun. The W distillation apparatus was brought into the glovebox and the oil was characterized.

For aminosilanes Ph₃Si(NH'Bu) and Ph₃Si(NEt₂), the NMR tube was opened to air, and the contents quickly transferred to a Schlenk tube under dynamic N₂. The tube was sealed with a glass stopper and the contents were reduced to either an oil or a solid under dynamic vacuum. The stopper was subsequently switched for a water-cooled cold finger and the contents heated under dynamic vacuum until solid had sublimed. The sublimator was brought into the glovebox and the pure solid was characterized.

S5.2. PhSi(NPy)₃

Colorless oil (Yield: 52 mg, 44%). ¹H NMR (benzene- d_6 , 500 MHz): 7.77 (d, J = 7.9 Hz, 2H), 7.41-7.19 (m, 3H), 3.13 (s, 12H), 1.63 (s, 12 H). ¹³C{¹H} NMR (benzene- d_6 , 126 MHz): 137.88 (s), 135.37 (s), 129.17 (s), 47.49 (s), 27.22 (s). ²⁹Si{¹H} (benzene- d_6 , 99Hz): -34.67. HRMS (ESI) [M+H]⁺ for C₁₈H₃₀N₃Si⁺; calc'd: 316.2204, found: 316.2197.

Figure S5.1. ¹H NMR spectrum for PhSi(NPy)₃.

Figure S5.2. ¹³C{¹H} NMR spectrum for PhSi(NPy)₃.

Figure S5.3. $^{29}Si\{^{1}H\}$ NMR spectrum for PhSi(NPy)_3.

Figure S5.4. Full HRMS fragmentation spectrum for [PhSi(NPy)₃+H]⁺.

Figure S5.5. Background-subtracted HRMS fragmentation spectrum for [PhSi(NPy)₃+H]⁺.

S5.3. Ph₃Si(NH[']Bu)

White solid (14.9 mg, 12% yield). ¹H NMR (benzene- d_6 , 500 MHz): 7.88-7.79 (m, 6H), 7.21 (dd, J = 5.0, 1.9 Hz), 1.28 (s, 1H), 1.09 (s, 9H). ¹³C{¹H} NMR (benzene- d_6 , 126 MHz): 137.38, 135.89, 129.30, 33.54, 1.09. ²⁹Si{¹H} NMR (benzene- d_6 , 99 MHz): -20.93. HRMS (ESI) [M+H]⁺ for C₂₂H₂₆NSi⁺; calc'd: 332.1819, found: 332.1819.

Figure S5.6. ¹H NMR spectrum for Ph₃Si(NH/Bu).

Figure S5.7. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum for Ph_3Si(NH/Bu).

Figure S5.8. ²⁹Si{¹H} NMR spectrum for Ph₃Si(NH'Bu).

Figure S5.8. Full HRMS fragmentation spectrum for [Ph₃Si(NH'Bu)+H]⁺.

Figure S5.9. Background-subtracted HRMS fragmentation spectrum for [Ph₃Si(NH/Bu)+H]⁺.

S5.3. (*p*-MeO-C₆H₄)Ph₂Si(NH'Bu)

Opaque oil (85.1 mg, 59% Yield). ¹H NMR (benzene- d_6 , 500 MHz): 7.87 (dd, J = 7.6, 1.9 Hz, 4H), 7.76 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 7.5 Hz, 6H), 6.84 (d, J = 8.7 Hz, 2H), 3.30 (s, 3H), 1.30 (s, 1H), 1.13 (s, 9H). ¹³C{¹H} NMR (benzene- d_6 , 126 MHz): 161.01, 137.85, 137.46, 135.81, 129.18, 113.59, 54.18, 49.80, 33.55. ²⁹Si{¹H} NMR (benzene- d_6 , 99 MHz): -20.95. HRMS (ESI) [M+H]⁺ for C₂₃H₂₈NOSi⁺; calc'd: 362.1935, found: 362.1935.

Figure S5.10. ${}^{13}C{}^{1}H$ NMR spectrum for (*p*-MeO-C₆H₄)Ph₂Si(NH^{*t*}Bu).

Figure S5.11. ${}^{13}C{}^{1}H$ NMR spectrum for (*p*-MeO-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.12. ${}^{29}Si{}^{1}H$ NMR spectrum for (*p*-MeO-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.13. Full HRMS fragmentation spectrum for [(p-MeO-C₆H₄)Ph₂Si(NH/Bu)+H]⁺.

Figure S5.14. Background-subtracted HRMS fragmentation spectrum for $[(p-MeO-C_6H_4)Ph_2Si(NH'Bu)+H]^+$.

S5.4. $(p-Me-C_6H_4)Ph_2Si(NH'Bu)$

Opaque oil (17.9 mg, 15% Yield). ¹H NMR (benzene- d_6 , 500 MHz): 7.86 (dd, J = 6.9, 2.5 Hz, 4H), 7.78 (d, J = 8.1 Hz, 2H), 7.30-7.17 (m, 6H), 7.07 (d, J = 7.5 Hz, 2H), 2.12 (s, 3H), 1.31 (s, 1H), 1.12 (s, 9H). ¹³C{¹H} NMR (benzene- d_6 , 126 MHz): 139.33, 138.04, 136.40, 136.22, 134.08, 129.59, 128.95, 50.20, 33.92, 21.49. ²⁹Si{¹H} NMR (benzene- d_6 , 99 MHz): -20.26. HRMS (ESI) [M+H]⁺ for C₂₃H₂₈NSi⁺; calc'd: 346.1986, found: 346.1987.

Figure S5.15. ¹H NMR spectrum for (*p*-Me-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.16. ${}^{13}C{}^{1}H$ NMR spectrum for (*p*-Me-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.17. ²⁹Si $\{^{1}H\}$ NMR spectrum for (*p*-Me-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.18. Full HRMS fragmentation spectrum for [(p-Me-C₆H₄)Ph₂Si(NH'Bu)+H]⁺.

Spectrum Plot Report

Figure S5.19. Background-subtracted HRMS fragmentation spectrum for [(p-Me-

 C_6H_4)Ph₂Si(NH'Bu)+H]⁺.

S5.5. (*p*-F₃C-C₆H₄)Ph₂Si(NH'Bu)

Opaque oil (92.9 mg, 82% Yield). ¹H NMR (benzene- d_6 , 500 MHz): 7.75-7.67 (m, 6H), 7.38 (d, J = 8.2 Hz, 2H), 7.24-7.17 (m, 6H), 1.36 (s, 1H), 1.05 (s, 9H). ¹³C{¹H} NMR (benzene- d_6 , 126 MHz): 142.46, 136.29, 136.03, 135.68, 129.60, 124.12, 49.87, 33.41. ¹⁹F{¹H} NMR (benzene- d_6 , 471 MHz): - 61.34. ²⁹Si{¹H} NMR (benzene- d_6 , 99 MHz): -21.42. HRMS (ESI) [M+H]⁺ for C₂₃H₂₅F₃NSi⁺; calc'd: 500.1703, found: 400.1706.

Figure S5.20. ¹H NMR spectrum for $(p-F_3C-C_6H_4)Ph_2Si(NH'Bu)$.

Figure S5.21. ¹³C{¹H} NMR spectrum for $(p-F_3C-C_6H_4)Ph_2Si(NH'Bu)$.

Figure S5.22. ${}^{19}F{}^{1}H$ NMR spectrum for (*p*-F₃C-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.23. ²⁹Si $\{^{1}H\}$ NMR spectrum for (*p*-F₃C-C₆H₄)Ph₂Si(NH'Bu).

Figure S5.24. Full HRMS fragmentation spectrum for [(p-F₃C-C₆H₄)Ph₂Si(NH'Bu)+H]⁺.

Spectrum Plot Report

Figure S5.25. Background-subtracted HRMS fragmentation spectrum for [(p-F₃C-

 C_6H_4)Ph₂Si(NH'Bu)+H]⁺.

S5.6. Ph₃Si(NEt₂)

White solid (84.4 mg, 68% yield). ¹H NMR (benzene- d_6 , 500 MHz): 7.78-7.76 (m, 6H), 7.22-7.21 (m, 9H), 3.03-2.98 (q, J = 7.1 Hz, 4H), 0.96 (t, J = 7.0 Hz, 6H). ¹³C{¹H} NMR (benzene- d_6 , 126 MHz): 136.18, 129.45, 127.80, 40.50, 15.06. ²⁹Si{¹H} NMR (benzene- d_6 , 99 MHz): -12.45. HRMS (ESI) [M+H]⁺ for C₂₂H₂₆NSi⁺; calc'd: 332.1829, found: 332.1831.

Figure S5.26. ¹H NMR spectrum for Ph₃Si(NEt₂).

Figure S5.27. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum for Ph_3Si(NEt_2).

Figure S5.28. $^{29}Si\{^{1}H\}$ NMR spectrum for Ph_3Si(NEt_2).

Figure S5.29. Full HRMS fragmentation spectrum for [Ph₃Si(NEt₂)+H]⁺.

Figure S5.30. Background-subtracted HRMS fragmentation spectrum for [Ph₃Si(NEt₂)+H]⁺.
S6. References

- 1. Bellini, C.; Carpentier, J.-F.; Tobisch, S.; Sarazin, Y. Angew. Chem. Int. Ed. 2015, 54, 7679-7683.
- 2. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.
- 3. Wang, J. X.; Dash, A. K.; Berthet, J. C.; Ephritikhine, M.; Eisen, M. S. J. Organomet. Chem. 2000, 610, 49-57.
- 4. Xie, W.; Hu, H.; Cui, C. Angew. Chem. Int. Ed. 2012, 51, 11141-11144.
- 5. Anga, S.; Sarazin, Y.; Carpentier, J.-F.; Panda, T. K. *ChemCatChem* **2016**, *8*, 1373-1378.
- 6. Cibuzar, M. P.; Waterman, R. Organometallics 2018, 37, 4395-4401.
- 7. Dunne, J. F.; Neal, S. R.; Engelkemier, J.; Ellern, A.; Sadow, A. D. *J. Am. Chem. Soc.* **2011**, *133*, 16782-16785.
- 8. Zhang, X.; Zhou, S.; Fang, X.; Zhang, L.; Tao, G.; Wei, Y.; Zhu, X.; Cui, P.; Wang, S. *Inorg. Chem.* **2020**, *59*, 9683-9692.
- 9. Wrackmeyer, B.; Stader, C.; Zhou, H. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 1989, 45, 1101-1111.
- 10. Cosham, S. D.; Johnson, A. L.; Kociok-Köhn, G.; Molloy, K. C. J. Organomet. Chem. 2014, 772-773, 27-33.
- 11. Bowser, J. R.; Marohn, K. F.; Gilbert, S. R.; Robbins, A. M. Synth. React. Inorg. Met. Org. Chem. **1999**, *29*, 1559-1566.
- Ojeda-Amador, A. I.; Munarriz, J.; Alamán-Valtierra, P.; Polo, V.; Puerta-Oteo, R.; Jiménez, M. V.; Fernández-Alvarez, F. J.; Pérez-Torrente, J. J. *ChemCatChem* 2019, *11*, 5524-5535.
- 13. Leigh, W. J.; Li, X. J. Phys. Chem. A 2003, 107, 1517-1524.
- 14. Filleux-Blanchard, M. L.; An, N. D. Org. Magn. Reson. 1979, 12, 12-16.
- 15. Xu, M.; Kooij, B.; Wang, T.; Lin, J. H.; Qu, Z.-W.; Grimme, S.; Stephan, D. W. Angew. Chem. Int. Ed. **2021**, 60, 16965-16969.
- 16. Takaki, K.; Kamata, T.; Miura, Y.; Shishido, T.; Takehira, K. J. Org. Chem. 1999, 64, 3891-3895.
- 17. Rina, Y. A.; Schmidt, J. A. R. Organometallics 2022, 41, 2974-2984.