Two Novel Nitrogen-rich Metal-organic Nanotubes: Syntheses, Structures and Selective Adsorption toward Rare Earth

Minli Zhong¹, Siyao Xia¹, Sanmei Liu, Caiju Jin, Shengjun Deng*, Weiming Xiao, Shunmin Ding, Chao

Chen*

Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and

Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China

¹The first two authors contributed equally

*To whom correspondence should be addressed. E-mail: Shengjun Deng: <u>dshj1028@126.com</u>; Chao Chen <u>chaochen@ncu.edu.cn</u>

Contents

1 Experimental section.

2 Fig. S1. TGA curves of NCD-166 and NCD-167.

- 3 Fig. S2. PXRD patterns of NCD-166 (a) and NCD-167 (b) soaked in different pH aqueous solutions for 24 h.
- 4 Fig. S3. The fitting curves of Weber-Morris intra-particle diffusion models of Eu³⁺ adsorption.
- 5 Fig. S4. Solid state UV-vis spectra of **NCD-167** before and after Eu³⁺ adsorption.
- 6 Fig. S5. The coordination environment of the organic ligands and Zn²⁺ ions of **NCD-167**.
- 7 Fig. S6. Crystal photographs of NCD-166 (a) and (b) NCD-167.
- 8 Fig. S7. PXRD pattern of NCD-167 before and after Eu³⁺ adsorption.

9. Fig. S8. (a) The recycling performance of NCD-166 and NCD-167; (b) PXRD pattern of NCD-166 and NCD-167 before and after recycling.

10 Table S1. Crystal Data and structure refinement for NCD-166 and NCD-167.

11 Table S2. Comparison of adsorption capacity of different adsorbents for Eu³⁺.

12 Table S3. The fitting results by the Weber-Morris intra-particle diffusion model of Eu³⁺ onto NCD-167.

13 References

1 Experimental section

1.1 Characterization

The PXRD patterns for the samples were taken on a flat plate in the 2θ range 4-50°, using a Puxi DX-3 X-ray powder diffractometer, equipped with Cu K α (λ = 1.5418 Å) radiation. The thermogravimetric analysis (TGA) was performed under a nitrogen atmosphere with the heating rate of 10 \degree C min⁻¹ with METTLER TPLEDO DSC+ thermal analyzer. Fourier transform infrared (FT-IR) spectra of the samples were measured on a Agilent Cary 630 infrared spectrum apparatus using the KBr sheeting method in the range of 4000–400 cm⁻¹. The concentration of metal ions before and after adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, Agilent, 5100). pH meter (INESA PHS-3C) was used to measure the pH of solutions and Zetasizer Nano series (Nano-ZS90) was used to measure the surface charge of the samples. The Perkin-Elmer 240 analyzer was applied to determine the contents of nitrogen, hydrogen and carbon. The Agilent Cary 60 spectrophotometer was applied to record the Ultraviolet-visible spectra. X-ray photoelectron spectroscopy (XPS) was conducted on a Thermo Scientific[™] K-Alpha^{™+} spectrometer equipped with a monochromatic Al Kα X-ray source (1486.6 eV) operating at 100 W. Samples were analysed under vacuum ($P < 10^{-8}$ mbar) with a pass energy of 150 eV (survey scans) or 50 eV (high-resolution scans). All peaks would be calibrated with C1s peak binding energy at 284.8 eV for adventitious carbon. Single-crystal diffraction data was collected on a CCD area detector diffractometer equipped with Mo K_{α} radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least-squares with Olex2 programs.¹ The disordered solvent molecules were removed by the SQUEEZE program.² CCDC 2206369 and 2206383 for NCD-166 and NCD-167 can be obtained free of charge from http://www.ccdc.cam.ac.uk/data request/cif or by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

1.2 Calculations of Adsorption Kinetics

The curves were fitted using pseudo-first-order model (Eq. S1), pseudo-second-order model (Eq. S2) and Weber-Morris intra-particle diffusion model (Eq. S3).

$$ln(q_e-q_t) = ln(q_t) - k_1 t$$
(1)

$$t/q_t = 1/(k_2 \times q_e^2) + t/q_e$$
(2)

$$q_t = kt^{0.5} + C$$
(3)

where q_e and q_t (mg g⁻¹) were the adsorption capacity at equilibrium and a specific time, respectively. k_1 , k_2 (min⁻¹)

and k (mg g⁻¹ min^{0.5}) respectively represented the rate constant of pseudo-first-order model, pseudo-second-order model, and Weber-Morris models.

1.3 Calculations of Adsorption Isotherms

The adsorption isotherms were fitted using the Langmuir model (Eq. S4), and Freundlich model (Eq. S5)

$$C_e/q_e = 1/(K_L \times q_m) + C_e/q_m$$
 (4)
 $\ln q_e = \ln K_F + (1/n) \ln C_e$ (5)

1.4 Calculations of Selectivity Adsorption

The selectivity towards Eu^{3+} was determined through the calculation of the selectivity (S_{Eu}, %, Eq. S6).

$$S_{Eu} = \frac{q_{(Eu)}}{q_{(all\ ions)}} \times 100$$
(7)

Fig. S1. TGA curves of NCD-166 and NCD-167.

Fig. S2. PXRD patterns of NCD-166 (a) and NCD-167 (b) soaked in different pH aqueous solutions for 24 h.

Fig. S3. The curves fitted by Weber-Morris intra-particle diffusion models for Eu³⁺ adsorption

Fig. S4. Solid state UV-vis spectra of NCD-167 before and after Eu^{3+} adsorption.

Fig. S5. The coordination environment of the organic ligands and Zn²⁺ ions of NCD-167.

Fig. S6. Crystal photographs of NCD-166 (a) and (b) NCD-167.

Fig. S7. PXRD pattern of NCD-167 before and after Eu³⁺ adsorption.

Fig. S8: (a) The recycling performance of NCD-166 and NCD-167; (b) PXRD pattern of NCD-166 and NCD-167

before and after recycling.

Table S1. Crystal Data and Structure Refinement for NCD-166 and NCD-167

Compound	NCD-166	NCD-167
Empirical formula	C ₃₀ H ₂₆ N ₆ O ₅ Zn	$C_{29}H_{26}N_6O_5Zn$
	5	

Formula weight	615.94	603.93
Temperature/K	100.15	100.15
Crystal system	trigonal	trigonal
Space group	P-3	P-3
a/Å	26.672(5)	26.7528(12)
b/Å	26.672(5)	26.7528(12)
c/Å	13.683(3)	13.4196(12)
α/°	90	90
β/°	90	90
γ/°	120	120
Volume/Å ³	8430(4)	8317.8(11)
Z	6	6
$\rho_{calc}g/cm^3$	0.728	0.723
µ/mm⁻¹	0.463	0.468
F(000)	1908	1872
Crystal size/mm ³	$0.12 \times 0.09 \times 0.04$	$0.09 \times 0.05 \times 0.09$
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
2θ range for data collection/°	4.264 to 50.002	1.758 to 50.02
	-31 ≤ h ≤ 31,	-30 ≤ h ≤ 31,
Index ranges	-30 ≤ k ≤ 31,	-27 ≤ k ≤ 31,
	-14 ≤ ≤ 16	-12 ≤ ≤ 15
Reflections collected	41766	43031
Indonandant reflections	9930 [R _{int} = 0.1619,	9782 [R _{int} = 0.0834,
independent renections	R _{sigma} = 0.1227]	R _{sigma} = 0.0755]
Data/restraints/parameters	9930/20/387	9782/14/378
Goodness-of-fit on F ²	1.053	1.041
Final Dindexes [1, -2 - (1)]	R ₁ = 0.0786,	R ₁ = 0.0567,
Final R indexes [1>=20 (1)]	wR ₂ = 0.2153	wR ₂ = 0.1775
	$R_1 = 0.1325$,	$R_1 = 0.0860$,
Final R indexes [all data]	wR ₂ = 0.2725	$wR_2 = 0.2004$
Largest diff. peak/hole / e Å ⁻³	0.95/-0.59	0.49/-0.39

Table S2. Comparison of adsorption capacity of different adsorbents for Eu^{3+}

	Material	Temperature (K)	рН	Adsorption Capacity (mg g ⁻¹)	Reference
	UiO-66	298	4	43	
	UiO-66-COOH	298	4	80	3
	UiO-66-2COOH	298	4	150	
	Fe ₃ O ₄ @ZIF-8	298	5	255.6	4
	Cr-MIL-PMIDA	298	5.5	85	F
Functionalized	Cr-MIL-NH ₂	298	5.5	12.5	5
MOFs	UiO-66-CN	298		147.1	C
	UiO-66-AO	298		253.8	6
	Co-MOF	298	5	52.93	7
	CMPO@MIL-101(Cr)	298	5	12.5	8
	UiO-66-NH ₂ @ZIF-8	298	5	295.28	9
	Zn-BDC MOF/GO	298	4	39.01	24
	CMC/MMWCNTs	298	6	51	10
	Titanate nanotubes	298		18.8	11
	Humic acid-MWCNT hybrid	298	4.3	2.6	12
Nesetukes	Multiwall carbon nanotube	298	4.3	1.4	
Nanotubes -	MWCNT/Fe ₃ O ₄	298	4.5	9.1	13
	H-Titanates nanotubes short	298	4	22.8	14
	H-Titanates nanotubes long	298	4	9.8	
	TNTs	293	4.5	48.3	15
Biological composite	bio-PDA	298	6.5	151.52	16
Metal oxide	[Me ₂ NH ₂] V ₃ O ₇			161.4	17
Molecular sieve	Molecular sieve (OMS-2)	298	5	106	18
Thiostannate	layered thiostannate			139	19
Ti ₃ C ₂ Tx MXene	Ti ₃ C ₂ Tx MXene (TCCH)	298	5	97.1	20
Graphene oxide (GO)	AO/mGO composites	293	4	69	21
	MnO ₂ /graphene oxide	298	5	83.5	22
	graphene oxide	298	5	68.4	
Clay	palygorskite	298	4	46.75	23
MONTs	NCD-167	298	5	150.90	This work

 Table S3. The fitting results by the Weber-Morris intra-particle diffusion model of Eu³⁺ onto NCD-167

Material	Weber-Morris intra-particle diffusion model			
	k _I (mg g ⁻¹ min ^{0.5})	R ²	k _{II} (mg g ⁻¹ min ^{0.5})	R ²
NCD-166	9.41	0.92	0.99	0.72

NCD-167	32.30	0.89	0.30	0.85

References

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. J. Puschmann, Appl. Crystallogr. 2009, 42, 339–341.

2. Spek, A. Acta Crystallogr. Section C 2015, 71, 9–18.

3. Zhao, B.; Yuan, L.; Wang, Y.; Duan, T.; Shi, W. Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation. *ACS Appl. Mater. Inter.* **2021**, 13 (14), 16300-16308.

4. Wu, Y.; Li, B.; Wang, X.; Yu, S.; Pang, H.; Liu, Y.; Liu, X.; Wang, X. Magnetic metal-organic frameworks (Fe₃O₄@ZIF-8) composites for U(VI) and Eu(III) elimination: simultaneously achieve favorable stability and functionality. *Chem. Eng. J.* **2019**, 378, 122105.

5. Sinha, S.; De, S.; Mishra, D.; Shekhar, S.; Agarwal, A.; Sahu, K. K. Phosphonomethyl iminodiacetic acid functionalized metal organic framework supported PAN composite beads for selective removal of La(III) from wastewater: Adsorptive performance and column separation studies. *J. Hazard. Mater.* **2022**, 425, 127802.

6. Wu, Y.; Li, B.; Wang, X.; Yu, S.; Liu, Y.; Pang, H.; Wang, H.; Chen, J.; Wang, X. Determination of practical application potential of highly stable UiO-66-AO in Eu(III) elimination investigated by macroscopic and spectroscopic techniques. *Chem. Eng. J.* **2019**, 365, 249-258.

7. Khalil, M.; Shehata, M. M.; Ghazy, O.; Waly, S. A.; Ali, Z. I. Synthesis, characterization and γ-rays irradiation of cobalt-based metal-organic framework for adsorption of Ce(III) and Eu(III) from aqueous solution. *Radiat. Phy. Chem.* **2022**, 190, 109811.

8. Fonseka, C.; Ryu, S.; Choo, Y.; Mullett, M.; Thiruvenkatachari, R.; Naidu, G.; Vigneswaran, S. Selective Recovery of Rare Earth Elements from Mine Ore by Cr-MIL Metal–Organic Frameworks. *ACS Sustainable Chem. Eng.* **2021**, 9 (50), 16896-16904

9. Zhang, M.; Yang, K.; Cui, J.; Yu, H.; Wang, Y.; Shan, W.; Lou, Z.; Xiong, Y. 3D-agaric like core-shell architecture UiO-66-NH₂@ZIF-8 with robust stability for highly efficient REEs recovery. *Chem. Eng. J.* **2020**, 386, 124023.

10. Zong, P.; Cao, D.; Cheng, Y.; Wang, S.; Hayat, T.; Alharbi, N. S.; Guo, Z.; Zhao, Y.; He, C. Enhanced performance for Eu(III) ion remediation using magnetic multiwalled carbon nanotubes functionalized with carboxymethyl cellulose nanoparticles synthesized by plasma technology. *Inorg. Chem. Front.* **2018**, 5 (12), 3184-3196.

11. Sheng, G.; Dong, H.; Shen, R.; Li, Y. Microscopic insights into the temperature-dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. *Chem. Eng. J.* **2013**, 217, 486-494.

12. El-Sweify, F. H.; Abdelmonem, I. M.; El-Masry, A. M.; Siyam, T. E.; Abo-Zahra, S. F. Adsorption Behavior of Co(II) and Eu(III) on Polyacrylamide/Multiwalled Carbon Nanotube Composites. *Radiochemistry* **2019**, 61 (3), 323-330.

13. Chen, C. L.; Wang, X. K.; Nagatsu, M. Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence of Polyacrylic Acid. *Environ. Sci. Technol.* **2009**, 43, 2362–2367.

14. Petrov, V.; Chen, Z.; Romanchuk, A.; Demina, V.; Tang, Y.; Kalmykov, S. Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures. *Appl. Sci.* **2019**, 9 (4), 697.

15. Lu, S.; Ma, B.; Wu, S.; Zhou, J.; Wang, X. Comparison sorption properties of Eu(III) on titanate nanotubes and rutile studied by batch technique. *J. Radioanal. Nucl. Chem.* **2015**, 306 (2), 527-534.

16. Zhou, X.; Liu, W.; Tian, C.; Mo, S.; Liu, X.; Deng, H.; Lin, Z. Mussel-inspired functionalization of biological calcium carbonate for improving Eu(III) adsorption and the related mechanisms. *Chem. Eng. J.* **2018**, 351, 816-824.

17. Sun, H.; Liu, Y.; Lin, J.; Yue, Z.; Li, W.; Jin, J.; Sun, Q.; Ai, Y.; Feng, M.; Huang, X. Highly Selective Recovery of Lanthanides by Using a Layered Vanadate with Acid and Radiation Resistance. *Angew. Chem. Int. Ed.* **2020**, 59 (5),

1878-1883.

18. Yin, L.; Hu, B.; Zhuang, L.; Fu, D.; Li, J.; Hayat, T.; Alsaedi, A.; Wang, X. Synthesis of flexible cross-linked cryptomelane-type manganese oxide nanowire membranes and their application for U(VI) and Eu(III) elimination from solutions. *Chem. Eng. J.* **2020**, 381, 122744.

Qi, X. H.; Du, K. Z.; Feng, M. L.; Gao, Y. J.; Huang, X. Y.; Kanatzidis, M. G. Layered A₂Sn₃S₇.1.25H₂O (A = Organic Cation) as Efficient Ion-Exchanger for Rare Earth Element Recovery. *J. Am. Chem. Soc.* 2017, 139 (12), 4314-4317.
 Zhang, P.; Wang, L.; Du, K.; Wang, S.; Huang, Z.; Yuan, L.; Li, Z.; Wang, H.; Zheng, L.; Chai, Z.; Shi, W. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. *J. Hazard. Mater.* 2020, 396, 122731.

21. Hu, B.; Guo, X.; Zheng, C.; Song, G.; Chen, D.; Zhu, Y.; Song, X.; Sun, Y. Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques. *Chem. Eng. J.* **2019**, 357, 66-74.

22. Ma, J.; Zhao, Q.; Zhou, L.; Wen, T.; Wang, J. Mutual effects of U(VI) and Eu(III) immobilization on interpenetrating 3-dimensional MnO₂/graphene oxide composites. *Sci. Total Environ.* **2019**, 695, 133696.

23. Zhu, Y.; Chen, T.; Liu, H.; Xu, B.; Xie, J. Kinetics and thermodynamics of Eu(III) and U(VI) adsorption onto palygorskite. *J. Mol. Liq.* **2016**, 219, 272-278.

24. Chen, Z.; Li, Z.; Chen, J.; Tan, H.; Wu, J.; Qiu, H. Selective Adsorption of Rare Earth Elements by Zn-BDC MOF/Graphene Oxide Nanocomposites Synthesized via In Situ Interlayer-Confined Strategy. *Ind. Eng. Chem. Res.* **2022**, 61 (4), 1841-1849.