Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Novel Cu(II) Complexes as DNA-destabilizing Agents and Their DNA Nuclease Activity

Hee Chang Kwon,^a Da Hyun Lee,^a Minyoung Yoon,^b Saira Nayab,^{b,c} Hyosun Lee,^{b,*} and Ji Hoon Han^{a,*}

- ^aDepartment of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729
- ^b Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea

Contents

FIGURE S1	FTIR spectra of [L _A Cu(NO ₃) ₂] (Cu1)	2
FIGURE S2	FTIR spectra of [L _B Cu(NO ₃) ₂] (Cu2)	3
FIGURE S3	FTIR spectra of [L _C Cu(μ-Cl)Cl] ₂ (Cu4)	4
FIGURE S4	Elemental analysis of the synthesized complexes	5
FIGURE S5	ORTEP drawing of $[L_ACu(NO_3)_2]$ (Cu1)	6
FIGURE S6	ORTEP drawing of $[L_BCu(NO_3)_2]$ (Cu2)	7
FIGURE S7	ORTEP drawing of [L _c Cu(µ-Cl)Cl] ₂ (Cu4)	8
FIGURE S8	Ball and stick models, space-filling models, and topographic steric maps of complexes	9
FIGURE S9	Determination of the extinction coefficient for Cu(II) complexes	10
FIGURE S10	CD spectra of CT-DNA in the absence and presence of the various Cu(II) complexes under high salt conditions	11
FIGURE S11	Comparative analysis for fluorescence quenching of limited bound the various DNA binder	12
FIGURE S12	Thermal denaturation curves of CT-DNA in the absence and presence of Cu complexes under high salt conditions	13
FIGURE S13	Histogram of melting temperature of homogenous and alternative A-T and G-C oligomers in the absence and presence of various Cu(II) complexes	14
TABLE S1	Crystal data and structure refinement for Cu(II) complexes	15
TABLE S2	Relative amounts (%) of Forms (I), (II), and (III) in the presence of various concentrations (30 and 50 μ M) of Cu(II) complexes with ascorbate	16
TABLE S3	Effect of various ROS scavengers on scDNA cleavage	17

Page 1/1

Figure S2. F1

Figure S3. FTIR spectra of [L_CCu(µ-Cl)Cl]₂ (Cu4).

Figure S4. ORTEP drawing of $[L_ACu(NO_3)_2]$ (Cu1) with thermal ellipsoids at 30% probability. All hydrogen atoms are omitted for clarity.

Figure S5. ORTEP drawing of $[L_BCu(NO_3)_2]$ (Cu2) with thermal ellipsoids at 50% probability. All hydrogen atoms are omitted for clarity.

Figure S6. ORTEP drawing of $[L_cCu(\mu-Cl)Cl]_2$ (Cu4) with thermal ellipsoids at 50% probability. All hydrogen atoms are omitted for clarity.

Figure S7. Ball and stick models, space-filling models, and topographic steric maps of complexes

Figure S8. Elemental analysis of the synthesized complexes.

Eager 300 Summarize Results Date : 2022-09-08 at 08:49:35 Method Name : NCHS Method Filename : EA-A_20220907.mth Group No : 1 Element % Sample Name Nitrogen% Carbon% Sulphur% Hydrogen% ______ ____ ____ JO-7-60 13.27818871 43.98248672 4.334647655 $^{0}_{0}$ [L_ACu(NO₃)₂] 43.95064926 JG-7-60 13.66265583 4.317540169 2 Sample(s) in Group No : 1 Component Name Average 13.47042227 Nitrogen% Carbon% 43.96656799 Hydrogen% 4.326093912 Sulphur% 0 EagerSmart Summarize Results Date : 2022-10-07 at 09:45:11 Method Name : NCHS Method Filename : EA-D_20221006.mth Group No : 1 Element % Sample Name Nitrogen Carbon Hydrogen Sulphur ----------JG-7-61 13.89069843 40.90753937 3.900032043 0 JG-7-61 13.78213024 40.63606262 3.858319521 0 $[L_{R}Cu(NO_{3})_{2}]$ 2 Sample(s) in Group No : 1 Component Name Average Nitrogen 13.83641434 40.77180099 Carbon Hydrogen 3.879175782 Sulphur 0 Eager 300 Summarize Results Date : 2022-02-03 at 08:42:29 Method Name : NCHS Method Filename : EA-A_20220128.mth Group No : 1 Element % Sample Name Nitrogen% Carbon% Hydrogen% Sulphur% -----_____ JG-5-27 8.92653656 42.37840271 5.389563084 0 5.387815952 JG-5-27 8.866337776 42.49068832 [L_CCu(µ-Cl)Cl]₂ 0 2 Sample(s) in Group No : 1 Component Name Average ----- -----Nitrogen% 8.896437168 Carbon% 42.43454552 Hydrogen% 5.388689518 Sulphur% 0

Figure S9. Determination of the extinction coefficient for Cu complexes: Cu1(A), Cu2(B), Cu3(C), and Cu4(D).

Figure S10. CD spectra of CT-DNA in the absence and presence of the various Cu complexes under high salt conditions: Cu1 (A), Cu2 (B), Cu3 (C), and Cu4 (D), respectively. [CT-DNA] = 100 μ M and [Cu complex] = 0 (black dashed line), 50 (green line), 100 (blue line), and 150 μ M (red line). All samples contain 5 mM cacodylate buffer (pH 7.0) and 100 mM NaCl.

Figure S11. Comparative analysis for fluorescence quenching of limited bound the various DNA binder, EtBr (A) and Hoechst 33258 (B), at ratio = 0.1, by the addition of Cu1 (blue dot), Cu2 (orange dot), Cu3 (gray dot), and Cu4 (yellow dot). All data show the average value with an error bar after the experiment in duplicate. All samples contain 5 mM cacodylate buffer (pH 7.0) and 10 mM NaCl.

Figure S12. Thermal denaturation curves of CT-DNA in the absence and presence of Cu complexes, Cu1(blue line), Cu2(orange line), Cu3(gray line) and Cu4 (yellow line). $[CT-DNA] = 50 \ \mu\text{M}$ and $[Cu \ complex] = 100 \ \mu\text{M}$. All samples contain 5 mM cacodylate buffer (pH 7.0) and 100 mM NaCl.

Figure S13. Histogram of melting temperature of homogenous and alternative A-T and G-C oligomers in the absence (gray) and presence of various Cu complexes, Cu1 (blue), Cu2 (green), Cu3 (yellow), and Cu4 (orange). 24mer of alternative A-T (A), 20mer of homogenous A-T (B), 15mer of alternative G-C (C), 15mer of homogenous G-C (D), were used. The ratio of [Cu complex] / [Oligomer] was 10.

	[L _A Cu(NO ₃) ₂]	[L _B Cu(NO ₃) ₂]	$[L_{C}Cu(\mu-Cl)Cl]_{2}$
Empirical formula	C ₁₅ H ₁₈ CuN ₄ O ₆	C ₁₄ H ₁₆ CuN ₄ O ₇	$C_{22}H_{32}Cl_4Cu_2N_4$
Formula weight	413.87	415.85	621.39
Temperature (K)	100(2)	100(2)	150(2)
Wavelength (Å)	0.610	0.610	0.630
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/n$	<i>P</i> -1	$P2_{1}/c$
Unit cell dimensions			
a (Å)	9.968(2)	7.1870(1)	10.682(2)
b (Å)	7.9070(2)	8.2690(2)	7.1300(1)
c (Å)	21.463(4)	14.574(3)	16.493(3)
α (°)	90	74.02(3)	90
β (°)	101.99(3)	89.47(3)	100.03(3)
γ (°)	99	69.01(3)	90
Volume (Å ³), Z	1654.7(6), 4	773.6(3), 2	1236.9(4), 2
Density (calculated) (Mg/m ³)	1.661	1.785	1.668
Absorption coefficient			
(mm ⁻¹)	0.901	0.967	1.553
F(000)			
Crystal size (mm ³)	852	426	636
Theta range for data collection	0.080 imes 0.075 imes 0.050	0.200 imes 0.080 imes 0.070	$0.075 \times 0.035 \times 0.015$
Index ranges	1.665 to 33.665°	2.333 to 33.652°	1.716 to 25.999°

 Table S1. Crystal data and structure refinement for Cu(II) complexes.

	$-16 \le h \le 16,$	$-12 \le h \le 12,$	$-14 \le h \le 14,$
Reflections collected	$-12 \le k \le 12,$	$-13 \le k \le 13,$	$-9 \le k \le 9,$
Independent reflections	$-35 \le l \le 35$	$-22 \le l \le 23$	$-22 \le l \le 22$
Completeness to theta	27826	11409	12134
Absorption correction	8692 [R(int) = 0.0625]	7198 [R(int) = 0.0272]	3481 [R(int) = 0.0996]
Refinement method	99.4 % (21.469°)	95.1 % (21.469°)	100.0 % (22.210°)
	Empirical	Empirical	Empirical
Data / restraints / parameters	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Goodness-of-fit on F ²	8692 / 0 / 307	7198 / 0 / 235	3481 / 0 / 145
Final R indices [I>2sigma(I)]			
R indices (all data)	1.150	1.050	0.967
	$R_1 = 0.0476$	$R_1 = 0.0396$	$R_1 = 0.0415$
Largest diff. peak and hole (e.Å-	$wR_2 = 0.1382$	$wR_2 = 0.1178$	$wR_2 = 0.0975$
3)	$R_1 = 0.0586$	$R_1 = 0.0417$	$R_1 = 0.0576$
	$wR_2 = 0.1433$	$wR_2 = 0.1191$	$wR_2 = 0.1016$
	1.042 and -1.847	0.977 and -1.236	1.012 and -1.030

	Concentration (µM)	Form I (%)	Form II (%)	Form III (%)
sc DNA		83.5 ± 3.7	16.5 ± 3.7	0
Cul	30	70.9 ± 9.0	29.1 ± 9.0	0
	50	10.3 ± 9.0	56.4 ± 48.9	33.3 ± 57.7
Cu2	30	10.8 ± 9.3	55.9 ± 48.4	33.3 ± 57.7
	50	0	0	100
Cu3	30	25.9 ± 22.8	40.7 ± 35.5	33.3 ± 57.7
Cus	50	0	24.9 ± 43.2	75.1 ± 43.2
Cu4	30	0	0	100
	50	0	0	100

Table S2. Relative amounts (%) of Forms (I), (II), and (III) in the presence of various concentrations (30 and 50 μ M) of Cu(II) complexes with ascorbate

	Scavengers	Form I (%)	Form II (%)	Form III (%)
Cu1	sc DNA + Cu1	21.9±26.6	78.1±26.6	0
	Tiron	51.1±3.4	48.9±3.4	0
	Sodium azide	40.6±13.2	59.4±13.2	0
	Catalase	59.6±1.5	40.4±1.5	0
	DMSO	51.4±11.3	48.6±11.3	0
Cu2	sc DNA + Cu2	0	0	100
	Tiron	2.2±1.0	91.6±11.4	6.2±10.7
	Sodium azide	0	86.1±12.0	13.9±12.0
	Catalase	33.8±7.5	59.2±10.9	7.0±3.9
	DMSO	0	0	100
Cu3	sc DNA + Cu3	0	73.9±6.3	26.1±6.3
	Tiron	17.5±14.4	82.5±14.4	0
	Sodium azide	0	83.4±3.8	16.6±3.8
	Catalase	41.6±2.9	52.2±3.4	6.2±2.0
	DMSO	0	81.0±7.4	19.0±7.4
Cu4	sc DNA + Cu4	0	0	100
	Tiron	0	89.2±10.3	10.8±10.3
	Sodium azide	0	92.3±7.1	7.7±7.1
	Catalase	7.0±6.6	88.8±8.6	4.2±3.8
	DMSO	0	0	100

Table S3. Effect of various ROS scavengers on scDNA cleavage^a

^aData were obtained from Figure 6 for the Cu(II) complex. [*sc*DNA] = 100 μ M, [ascorbate] = 100 μ M, and [Cu(II) complex] = 50 μ M