Supporting Information

for

Bis(tetrelocenes) – fusing tetrelocenes into close proximity

Inga-Alexandra Bischoff,^a Bernd Morgenstern,^a Michael Zimmer,^a Aylin Koldemir,^b Rainer Pöttgen^b and André Schäfer^{*a}

^a Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Campus Saarbrücken, Germany

^b Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany

NMR spectra	S1-S5
Mössbauer spectra	S 6
XRD data	S7-S10
IR spectra	S11-S12
UV-Vis spectra	S13-S14
Computational details	S15-S18
References	S19

NMR spectra

Table S1: Fitting parameters of the ¹¹⁹Sn Mössbauer spectrum recorded at 78 K. δ = isomer shift, ΔE_Q = electric quadrupole splitting, Γ = experimental line width.

signal	δ(mm·s⁻¹)	∆ <i>E</i> _Q (mm·s ^{−1})	Г(mm·s⁻¹)	area
А	3.611(3)	0.991(8)	0.77(1)	83(1)
В	0.25(5)	0.77(7)	0.9(1)	8(1)
С	2.88(4)	1.94(8)	0.9(2)	9(1)

XRD data

Crystal structure data has been deposited with the Cambridge Crystallographic Data Centre (CCDC) and is available free of charge from the Cambridge Crystallographic Database (see reference numbers).

2a: CCDC Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume

Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

2288212 C₃₂H₄₄Ge₂Si₂ 630.03 133(2) K 0.71073 Å monoclinic C2 a = 17.5006(7) Å $\alpha = 90^{\circ}$ b = 8.6628(3) Å $\beta = 130.200(2)^{\circ}$ c = 13.3527(6) Å $\gamma = 90^{\circ}$ 1546.17(11) Å³ 2 1.35 g/cm³ 2.0 mm⁻¹ 656 0.306 x 0.163 x 0.128 mm³ 1.997 to 32.052° -26≤*h*≤20, -12≤*k*≤12, -18≤*l*≤19 36114 5375 [R(int) = 0.0249] 99.7 % semi-empirical from equivalents 0.746 and 0.649 full-matrix least-squares on F² 5375 / 1 / 169 1.081 R1 = 0.0139, wR2 = 0.0371 R1 = 0.0143, wR2 = 0.03720.0102(18) n/a 0.28 and -0.21 e.Å-3

Figure S12: Molecular structure of **2a** in the crystal (displacement ellipsoids at 50% probability level; H atoms omitted for clarity; symmetry label: Ge1^{#1}: #1: x, y, z; Ge1^{#2}: #2: 1-x, y, 1-z).

2b:

CCDC Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

2288213 C₃₂H₄₄Ge₄ 719.03 133(2) K 0.71073 Å monoclinic C2 a = 17.4066(7) Å $\alpha = 90^{\circ}$ b = 8.7580(4) Å $\beta = 128.6390(10)^{\circ}$ c = 13.1177(6) Å $\gamma = 90^{\circ}$ 1562.00(12) Å³ 2 1.53 g/cm³ 3.8 mm⁻¹ 728 0.156 x 0.117 x 0.051 mm³ 1.988 to 31.522°. -25≤*h*≤25, -12≤*k*≤12, -19≤*l*≤19 21387 5215 [R(int) = 0.0322] 100.0 % semi-empirical from equivalents 0.746 and 0.649 full-matrix least-squares on F² 5215 / 1 / 169 1.019 R1 = 0.0213, wR2 = 0.0434 R1 = 0.0237, wR2 = 0.0443 0.019(6) n/a 0.32 and -0.28 e.Å-3

Figure S13: Molecular structure of **2b** in the crystal (displacement ellipsoids at 50% probability level; H atoms omitted for clarity; symmetry label: Ge1^{#1}: #1: x, y, z; Ge1^{#2}: #2: 1-x, y, 1-z).

2c: CCDC Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

2288211 C32H44Si2Sn2 722.23 133(2) K 0.71073 Å orthorhombic Aba2 a = 16.7596(8) Å $\alpha = 90^{\circ}$ b = 21.3357(10) Å $\beta = 90^{\circ}$ c = 8.6837(4) Å $\gamma = 90^{\circ}$ 3105.1(3) Å^{3'} 4 1.55 g cm⁻³ 1.7 mm⁻¹ 1456 0.243 x 0.123 x 0.094 mm³ 2.263 to 26.697° -21≤*h*≤21, -26≤*k*≤26, -10≤*k*≤10 51606 3285 [R(int) = 0.0260] 99.9 % semi-empirical from equivalents 0.745 and 0.691 full-matrix least-squares on F² 3285 / 1 / 169 1.106 R1 = 0.0112, wR2 = 0.0303 R1 = 0.0114, wR2 = 0.0304 -0.003(5) n/a 0.19 and -0.32 e.Å-3

Figure S14: Molecular structure of **2c** in the crystal (displacement ellipsoids at 50% probability level; H atoms omitted for clarity; symmetry label: Sn1^{#1}: #1: *x*, *y*, *z*; Sn1^{#2}: #2: 1-*x*, 1-*y*, *z*).

Table S2: $E-C^{Cp}/C^{Cp\#}$ bond distances in **2a-c** in pm.

	2a (E = Ge)	2b (E = Ge)	2c (E = Sn)
C _C b	276.9(1).	277 2(2).	287 0(2).
-	264.0(1);	264.5(2);	272.8(3);
	246.4(2);	246.2(4);	260.5(3);
	247.7(2);	245.7(3);	265.4(2);
	265.2(1)	265.0(3)	281.4(2)
C ^{Cp#}	247.0(1);	247.1(2);	263.5(2);
	232.9(1);	262.0(2);	252.8(2);
	237.3(2);	255.1(3);	258.5(2);
	254.6(1);	237.0(3);	274.7(2);
	260.4(1)	232.9(2)	276.4(2)

 Table S3: Selected E-Cp/Cp# bond distances in 2a-c.

	2a (E = Ge)	2b (E = Ge)	2c (E = Sn)
E-Cp ^{centroid}	230.87(2)	230.78(3)	245.71(3)
E–Cp ^{plane}	228.21	227.79	243.75
Δ(Cp ^{centroid} -Cp ^{plane})	34.95	37.03	30.97
E-Cp ^{#,centroid}	214.71(2)	215.34(2)	235.92(4)
E-Cp ^{#,plane}	212.64	213.00	234.14
Δ(Cp ^{#,centroid} -Cp ^{#,plane})	29.74	31.66	28.93

IR spectra

Figure S15: IR spectrum of 2a.

Figure S16: IR spectrum of 2b.

Figure S17: IR spectrum of 2c.

UV-Vis spectra

Figure S18: UV-Vis spectrum of **2a** ($c = 8.67*10^{-5}$ mol L⁻¹ in hexane).

Figure S19: UV-Vis spectrum of **2b** ($c = 2.32*10^{-5} \text{ mol } L^{-1}$ in hexane).

Figure S20: UV-Vis spectrum of 2c (c = $3.08*10^{-5}$ mol L⁻¹ in hexane).

Computational details

All calculations were performed using the Gaussian 16, Revision C.01 package of programs.^[1] Geometry optimizations have been carried out at the PBE0-D3/def2-TZVP level of theory and subsequent single-point calculations at the PBE0-D3/def2-TZVPP level of theory.^[2] The optimized structures were confirmed to be minima on the potential energy surface by subsequent frequency analysis (all positive eigenvalues). NBO analysis were conducted with the NBO 7.0 software.^[3] AIM analysis were carried out with AIMAII.^[4]

Figure S15: Kohn-Sham molecular orbital contours of **2a** (PBE0-D3/def2-TZVPP//PBE0-D3/def2-TZVP; isovalue = 0.04 a.u.).

Figure S16: Kohn-Sham molecular orbital contours of **2b** (PBE0-D3/def2-TZVPP//PBE0-D3/def2-TZVP; isovalue = 0.04 a.u.).

Figure S17: Kohn-Sham molecular orbital contour of **2c** (PBE0-D3/def2-TZVPP//PBE0-D3/def2-TZVP; isovalue = 0.04 a.u.).

References

- [1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- [2] a) A. Schaefer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; b) A. Schaefer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; c) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; d) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057; e) J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; f) J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; f) J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396; g) C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158; h) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [3] E. D. Glendening, C. R. Landis and F. Weinhold, J. Comp. Chem., 2019, 40, 25, 2234.
- [4] a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon, Oxford, 1990; b) T. A. Keith and T. K. Gristmill, AIMAII, 19.02.13; Overland Park KS, USA (aim.tkgristmill.com), 2019.