Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information for Dalton Transactions This journal is @ The Royal Society of Chemistry 2008

Electronic Supporting Information for

Computation of ³¹P Chemical Shifts in Lacunary Polyoxotungstates

Jake A. Thompson and Laia Vila-Nadal*

School of Chemistry, University of Glasgow, United Kingdom. E-Mail: <u>laia.vila-nadal@chem.gla.ac.uk</u>.

TABLE OF CONTENTS

Characterisa	ation	2
³¹ P	NMR	2
UV–	-Vis	.5
ESI-	-MS	6
Den	nsity Functional Theory (DFT)	.9

Characterisation

³¹P NMR

Figure S1 ³¹P spectra of 50 mg Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺) samples, recorded in D₂O. TBA₃[PW₁₂O₄₀] salts (50 mg) were recorded in CD₃CN.

Figure S2 ³¹P spectra of 50 mg mono–lacunary Keggin, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) samples, recorded in D₂O.

Figure S3 ³¹P spectra of 50 mg tri–lacunary Keggin samples, Na₈H[PW₉O₃₆], recorded dissolved in D₂O.

FT–IR Spectra

Figure S4 IR spectra of Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺, TBA⁺) and mono–lacunary Keggin, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) samples.

Figure S5 IR spectra of tri–lacunary Keggin samples, $Na_8H[\Delta-PW_9O_{36}]$, freshly prepared and allowed to air–dry at room temperature, given by (a). However, if $Na_8H[\Delta-PW_9O_{36}]$ is dried at 140 °C for 1–2 h, then the spectrum shown by (b) is given. Prolonged heating (>15 h) at 140 °C produced spectra (c).

UV–Vis Spectra

Figure S6 UV–Vis spectra for 30 μ M solutions of Keggin, X₃[PW₁₂O₄₀] (X = Li⁺, Na⁺) and mono–lacunary Keggin, X₇[PW₁₁O₃₉] (X = Li⁺, Na⁺, K⁺) samples, recorded in aqueous solution. 30 μ M solutions of TBA₃[PW₁₂O₄₀] were recorded in acetonitrile.

ESI–MS Spectra

Figure S7 ESI–MS spectra for 1000 ppm solutions of Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺) clusters recorded in aqueous solution (top, middle) and TBA₃[PW₁₂O₄₀] recorded acetonitrile (bottom).

Figure S8 ESI–MS spectra for 1000 ppm solutions of mono–lacunary Keggin, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) clusters, recorded in aqueous solution.

Table S1 Summary of observed fragments from the ionisation of Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺) and mono–lacunary Keggin, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) clusters.

Anion	Observed m/z	Theoretical m/z
[PW ₁₂ O ₄₀] ³⁻	958.8	959.00
H[PW ₁₂ O ₄₀] ²⁻	1439.2	1439.02
Li[PW ₁₂ O ₄₀] ²⁻	1441.7	1441.98
Na[PW ₁₂ O ₄₀] ²⁻	1450.2	1450.01
H ₄ [PW ₁₁ O ₃₉] ³⁻	893.4	893.74
H ₅ [PW ₁₁ O ₃₉] ²⁻	1341.2	1341.12
Li ₄ H[PW ₁₁ O ₃₉] ²⁻	1343.8	1344.08
NaH ₄ [PW ₁₁ O ₃₉] ²⁻	1352.5	1352.11
K ₄ H[PW ₁₁ O ₃₉] ²⁻	1360.3	1360.16

Density Functional Theory (DFT)

Figure S9 Structures of Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺), mono–lacunary, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) and tri–lacunary, Na₈H[PW₉O₃₆] clusters, optimised at PBE0/TZP label of theory.

Figure S10 Structures of $[(n-C_xH_{2x+1})_4N]_3[PW_{12}O_{40}]$; where x = 0 – 4, optimised at PBE0/TZP label of theory.

Table S2 Computed, $\delta_{Calc}({}^{31}P)$, fitted, $\delta_{Fitted}({}^{31}P)$, and experimental, $\delta_{Exp}({}^{31}P)$, signals for Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺, TBA⁺), mono–lacunary, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) and tri–lacunary, Na₈H[PW₉O₃₆] clusters.

Complex	δ_{Calc}	δ_{Fitted}
Li ₃ [PW ₁₂ O ₄₀]	-12.84	-14.73
Na ₃ [PW ₁₂ O ₄₀]	-13.04	-14.87
TBA ₃ [PW ₁₂ O ₄₀]	-12.33	-14.62
Li ₇ [PW ₁₁ O ₃₉]	-7.27	-11.24
Na ₇ [PW ₁₁ O ₃₉]	-7.35	-11.29
K ₇ [PW ₁₁ O ₃₉]	-8.55	-12.04
Na ₈ H[A–PW ₉ O ₃₆]	-5.10	-9.87
Na ₈ H[B–PW ₉ O ₃₆]	6.28	-2.72

Table S2 Computed energies (PBE/TZP) for the highest occupied (HOMO), lowest unoccupied molecular orbitals (LUMO) and the corresponding energy gap for Keggin, $X_3[PW_{12}O_{40}]$ (X = Li⁺, Na⁺, TBA⁺), mono–lacunary, $X_7[PW_{11}O_{39}]$ (X = Li⁺, Na⁺, K⁺) and tri–lacunary, Na₈H[PW₉O₃₆] clusters, reported in eV.

Complex	НОМО	LUMO	Gap
Li ₃ [PW ₁₂ O ₄₀]	-7.909	-5.466	2.443
Na ₃ [PW ₁₂ O ₄₀]	-7.608	-5.117	2.491
TBA ₃ [PW ₁₂ O ₄₀]	-7.877	-3.993	3.884
Li ₇ [PW ₁₁ O ₃₉]	-7.591	-4.766	2.825
Na ₇ [PW ₁₁ O ₃₉]	-7.097	-4.181	2.916
K ₇ [PW ₁₁ O ₃₉]	-6.749	-3.828	2.921
Na ₈ H[A–PW ₉ O ₃₆]	-6.549	-3.305	3.244
Na ₈ H[B–PW ₉ O ₃₆]	-6.702	-3.586	3.116