Supporting Information:

Ultralow Ruthenium modification of Cobalt Metal–Organic Frameworks for Enhanced Efficient Bifunctional Water Splitting

Yuanyuan Wu^{a#}, Xuejiao Gu^{a#}, Wei Jiang^b, Jihui Lang^c, Yunchao Ma^a, Yang Lu^d, Xiaotian Yang

^{*a**, Chunbo Liu^{*b**}, Guangbo Che^{*a*,e*}}

^a Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China

^b Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing

Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000,

P. R. China.

^c Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China

^d College of Mathematics and Computer, Jilin Normal University, Siping 13600, P. R. China

e College of Chemistry, Baicheng Normal University, Baicheng, 13700, P. R. China

* Corresponding author: XiaoTian Yang (hanyxt@163.com); Chunbo Liu (chunboliu@jlnu. edu.cn); Guangbo Che (guangboche@jlnu.edu.cn)

[#]*The authors contributed equally to this work.*

1.Experimental section

1.1 Chemicals and reagents

Nickel foam (NF, 1.5 mm-thick, 200×300 mm) was purchased from Suzhou Keshenghe Metal Materials and was pretreated. Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), ruthenium trichloride hydrate (RuCl₃·xH₂O), and 2-methylimidazole (Hmim) were purchased from Aladdin. Hydrochloric acid (HCl) was purchased from Sinopharm Chemical Reagent Co.

Treatment of foam nickel:

First, nickel foam was placed in a hydrochloric acid (1 M) solution and sonicated for 10 min. Thereafter, the material was washed twice with deionised water, placed in an absolute ethanol solution, and sonicated for 10 min. Subsequently, the foamed Ni was washed twice with deionised water, followed by ultrasonication in deionised water for 5 min. The oxides and pollutants on the surface of the nickel foam (1 cm \times 6 cm) were removed, and the foam was dried at room temperature.

1.2 Synthesis of Co-MOF/NF

First, cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 0.29 g) and dimethylimidazole (0.656 g) were dissolved in deionised water (20 mL). The solution was then mixed with dimethylimidazole in a cobalt nitrate solution and stirred for 5 min, after which the treated NF was immersed in the solution and stirred for 4 h to obtain Co–MOF/NF. The prepared Co–MOF/NF samples were sonicated three times in anhydrous ethanol, then washed three times with deionised water, and dried at 60 °C under vacuum for 6 h.

1.3 Synthesis of CoRu_{0.06}-MOF/NF

First, cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 0.29 mg), ruthenium trichloride hydrate (RuCl₃·xH₂O, 25 mg), and dimethylimidazole (0.656 mg) were dissolved in deionised water (20 mL). A Hmim solution was then poured into the mixed metal solution and stirred for 5 min, and the treated NF was immersed in the solution and stirred for 4 h to obtain CoRu_{0.06}–MOF/NF. Finally, the CoRu_{0.06}–MOF/NF samples were sonicated three times with anhydrous ethanol, then washed three times with deionised water, and dried at 60 °C under vacuum for 6 h.

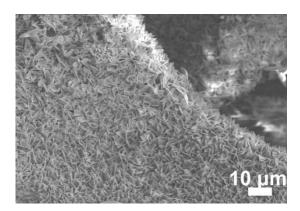


Fig. S1. SEM images of Co-MOF/NF.

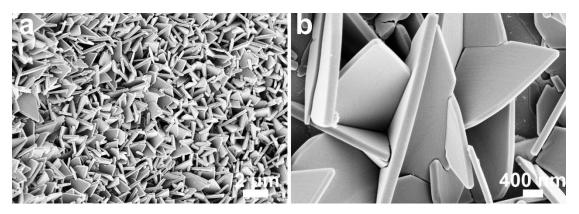
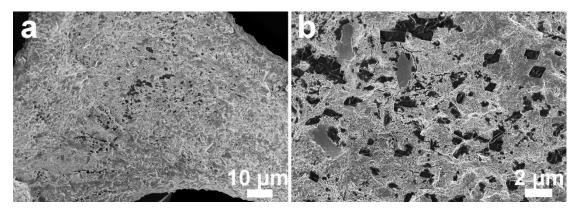
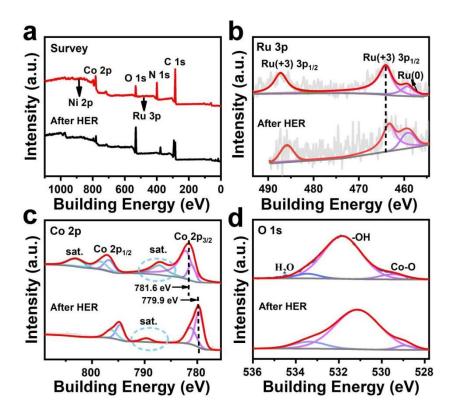
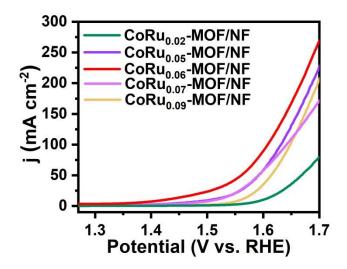


Fig. S2. (a,b) SEM images of CoRu_{0.06}-MOF.

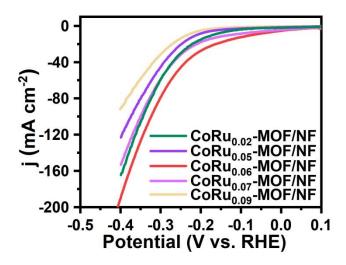

Fig. S3. (a,b) SEM image of CoRu_{0.06}-MOF after OER.

Fig. S4. (a) XPS measured spectra of $CoRu_{0.06}$ -MOF/NF, $CoRu_{0.06}$ -MOF/NF and Co-MOF/NF of (b) Ru 3p (c) Co 2p and (d) O1s in high resolution XPS spectra.

Fig. S5. LSV curves of OER test for catalysts with different Ru concentrations in alkaline media.

Fig. S6. LSV curves of HER test for catalysts with different Ru concentrations in alkaline media.

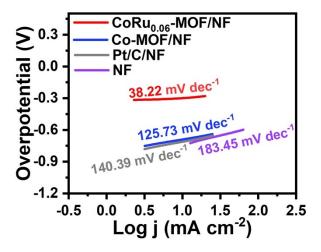
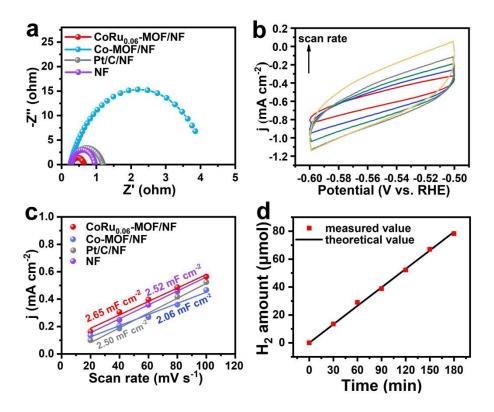



Fig. S7. Tafel slope plots of $CoRu_{0.06}$ -MOF/NF, Co-MOF/NF, RuO_2 /NF and NF.

Fig. S8. (a) EIS Nyquist plots of $CoRu_{0.06}$ -MOF/NF, Co-MOF/NF, Pt/C/NF and NF. (b) Cyclic Voltammetry curves of $CoRu_{0.06}$ -MOF/NF. (c) The plots of the current density versus the scan rate of $CoRu_{0.06}$ -MOF/NF, Co-MOF/NF, RuO₂/NF and NF. (d) Electrocatalytic efficiency of $CoRu_{0.06}$ -MOF/NF for HER at an overpotential of 10 mA cm⁻².

Catalyst	Electrolyt	HER/ Current		Overpotent	Stability	
	e solution	OER	density (j)	ial (η)	test	Reference
CoRu _{0.06} -MOF/NF	1 М КОН	HER	10 mA cm ⁻²	37 mV	95 h	This work
		OER		181 mV	110 h	
Co-LDH@ZIF-67	1 М КОН	OER	10 mA cm ⁻²	187 mV	50 h	Adv. Sci., 2021, 8(2): 2002631
Ru-NiSe ₂ /NF	1 M KOH	HER	10 mA cm ⁻²	29 mV	40 h	Small, 2022,18
		OER		210 mV	25 h	(6): 2105305
Ni ₁ Co ₃ @BC	1 M KOH	OER	10 mA cm ⁻²	309 mV	20 h	Appl. Surf. Sci., 2020, 532, 147381.
Ru-NiCoP/NF	1 M KOH	HER	10 mA cm ⁻²	44 mV	30 h	Appl. Catal. B Environ.,
		OER	20 mA cm ⁻²	216 mV	30 h	2020, 279: 119396
Co (OH) 2/Co-MOF	1 M KOH	OER	10 mA cm ⁻²	196 mV	54000 s	Chem. Eng. J., 2021, 408: 127319.
CoNi-MOF	1 M KOH	HER	10 mA cm ⁻²	110 mV	20 h	Adv. Mater. Interfaces,
		OER		265 mV		2018, 5(21): 1800849.
Ru-Co ₃ O ₄ -NiO-NF	1 M KOH	HER	10 mA cm ⁻²	44 mV	60 h	Chem. Eng. J., 2021, 426: 131300.
MOF-Fe/Co	1 M KOH	OER	10 mA cm ⁻²	238 mV	50000 s	Angew. Chem. Int. Ed., 2021, 60, 12097–12102
Ni _{0.5} Co _{0.5} -MOF-74	1 M KOH	OER	10 mA cm ⁻²	198 mV	1800 s	Nat. Energy, 2020, 5(11): 881-890.
Ru-SAs/AC-FeCoNi	1 М КОН	OER	10 mA cm ⁻²	205 mV	48 h	Adv. Energy. Mater., 2021, 11(1): 2002816

Table S1. Comparison of the electrocatalytic performance of $CoRu_{0.06}$ -MOF/NF withsome representative electrocatalysts reported recently for HER and OER.