Electrocatalytic Hydrogen Evolution Mediated by an Organotelluroxane Macrocycle Stabilized through Secondary Interactions

Gujju Narsimhulu ${ }^{\text {a }}$, Calvin Samuel ${ }^{\text {a }}$, Sathishkumar Palani ${ }^{\text {b }}$, Sai Hemant Kumar Dasaria ${ }^{\text {, Kothandam Krishnamoorthy }}$ b*, Viswanathan Baskara,*
aschool of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India. E-mail: vbsc@uohyd.ac.in
${ }^{\text {b }}$ Polymer Science and Engineering Division, CSIR-National Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India

Table of contents

Section	Contents	Page
1	Crystallographic information of compounds 2-5	S4-S5
2	ORTEP diagram of compound 2	S5
3-3.1	Te- $\mathrm{F}\left(\mathrm{BF}_{4}\right)$ interaction distances and Bond lengths and bond angles for compound 2	S5-S6
4-5	Cyclic voltammetry and bulky electrolysis and H_{2} calculation	S6-S9
6	ESI mass spectral analysis of compound 2	S10
7	${ }^{125} \mathrm{Te},{ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis of compound 2	S11-S13
8	Powder XRD data and FT-IR spectral analysis of compound 2	S13-S14
9	EDAX spectrum and elemental analysis of compound 2	S14-S15
10	ORTEP diagram of compound 3	S15
11	Te-O (perchlorate) interaction distances of compound 3	S16
12	Bond lengths and bond angles of compound 3	S16
13	ESI mass spectral analysis of compound 3	S17-S18
14	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis of compound 3	S19
15	Powder and FT-IR spectral analysis of compound 3	S20
16	EDAX spectrum and elemental analysis of compound 3	S21
17	ORTEP diagram of compound 4	S22
18	Te-F (BF_{4}) interaction distances, bond lengths and bond angles of compound 4	S22
19	ESI mass spectral analysis of compound 4	S23
20	${ }^{125} \mathrm{Te},{ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis of compound 4	S24-S26
21	Powder and FT-IR spectral analysis of compound 4	S27
22	EDAX spectrum and elemental analysis of compound 4	S28
23	ORTEP diagram of compound 5	S29
24	Te-O (perchlorate) interaction distances, bond lengths and bond angles of compound 5	S29
25	ESI mass spectral analysis of compound 5	S30

$\mathbf{2 6}$	${ }^{125}$ Te NMR spectral analysis of compound 5	S31
$\mathbf{2 7}$	Powder and FT-IR spectral analysis of compound 5	S31-S32
$\mathbf{2 8}$	EDAX spectrum and elemental analysis of compound 5	S32-S33
$\mathbf{2 9}$	Bond valence Sum calculation	S34-S36

Section - 1: Crystallographic information of compounds 2-5

Table S1. Crystallographic information of compounds 2-5.

	$\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{O}_{10} \mathrm{Te}_{4}$	$\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{Cl}_{4} \mathrm{O}_{26} \mathrm{Te}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{Te}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClO}_{7} \mathrm{Te}$
F.wt g/mol ${ }^{-1}$	1746.65	1797.24	535.79	548.43
T, K	100.0(2)	100.0(2)	106(9)	285
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group (number)	$P 2_{1} / \mathrm{C}$ (14)	$P 2_{1} / \mathrm{c}$ (14)	P-1 (2)	P-1 (2)
Crystal size mm ${ }^{3}$	$0.32 \times 0.25 \times 0.16$	$0.1 \times 0.08 \times 0.08$	$0.8 \times 0.12 \times 0.1$	$0.09 \times 0.08 \times 0.06$
a, \AA A	17.0516(2)	17.1420(1)	10.2455(2)	10.3196(4)
b, Å	17.0082(3)	17.2042(1)	10.5162(2)	10.7682(5)
c, \AA	26.0700(4)	26.0805(2)	10.9830(2)	11.1672(5)
α, deg	90	90	110.245(2)	111.398(1)
β, deg	97.065(1)	97.420(1)	97.955(1)	96.830(1)
ү, deg	90	90	104.283(1)	104.125(1)
V, \AA^{3}	7503.2(2)	7627.13(9)	1042.82(4)	1090.36(8)
Z	4	4	2	2
$\mathrm{D}_{\text {calcd }} \mathrm{Mg} / \mathrm{m}^{3}$	1.720	1.735	1.706	1.670
μ, mm^{-1}	1.635	1.734	1.482	1.526
F(000)	3800.0	3924.0	528.0	544.0
Theta range, deg	3.72 to 49.998	3.94 to 53.874	4.078 to 53.924	5.878 to 61.102
Index ranges	$\begin{aligned} & -20 \leq h \leq 20 \\ & -20 \leq k \leq 20 \\ & -30 \leq 1 \leq 30 \\ & \hline \end{aligned}$	$\begin{aligned} &-21 \leq h \leq 21 \\ &-21 \leq k \leq 21 \\ &-32 \leq 1 \leq 32 \\ & \hline \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13 \\ & -13 \leq k \leq 13 \\ & -13 \leq I \leq 13 \\ & \hline \end{aligned}$	$\begin{aligned} & -14 \leq h \leq 14 \\ & -15 \leq k \leq 15 \\ & -15 \leq 1 \leq 15 \\ & \hline \end{aligned}$
Total reflns	67629	80531	15561	58169
Ind. reflns / R(int)	13201/0.0817	15871/0.0230	4326/0.0318	6644/0.0298
Data/restraints/paramete rs	13201/0/954	15871/0/954	4326/0/274	6644/0/274
Completeness to $\theta_{\text {max }}$, \%	100	96.1	95.4	99.6
$\operatorname{GooF}\left(\mathrm{F}^{2}\right)$	1.040	1.141	1.051	1.043
$\mathrm{R}_{1} / \mathrm{wR}_{2}[1>2 \sigma(\mathrm{l})$]	$\begin{aligned} \mathrm{R}_{1} & =0.0594, \\ w \mathrm{R}_{2} & =0.1427 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1} & =0.0246, \\ w \mathrm{R}_{2} & =0.0521 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0267 \\ w R_{2}=0.0597 \end{gathered}$	$\begin{gathered} R_{1}=0.0223 \\ w R_{2}=0.0550 \end{gathered}$

$R_{1} / w R_{2}$ [all data]	$R_{1}=0.0741$, $w R_{2}=0.1499$	$R_{1}=0.0266$, $w R_{2}=0.0528$	$R_{1}=0.0294$, $w R_{2}=0.0610$	$R_{1}=0.0281$, $w R_{2}=0.0574$
Largest diff peak/hole, e. \AA^{-3}	$3.36 /-1.45$	$1.28 /-1.02$	$1.30 /-0.72$	$0.44 /-0.51$

Section - 2: ORTEP diagram of compound 2

Figure S1. ORTEP diagram of 2. The thermal ellipsoids are shown at a 40\% probability level. Solvent molecule and all hydrogen atoms were omitted for clarity.

Section - 3: Te-F $\left(\mathrm{BF}_{4}\right)$ interaction distances of compound 2

Table S2. Bridging anion Interaction with Tellurium [Å].

$\mathrm{Te}(1)-\mathrm{F}(5)$	3.020
$\mathrm{Te}(2)-\mathrm{F}(3)$	2.640
$\mathrm{Te}(3)-\mathrm{F}(2)$	2.607
$\mathrm{Te}(4)-\mathrm{F}(6)$	2.620

Table S3. Capping anion Interaction with Tellurium [Å].

$\mathrm{Te}(1)-F(12)$	2.800
$\mathrm{Te}(1)-F(16)$	2.890

$\mathrm{Te}(2)-F(12)$	2.940
$\mathrm{Te}(2)-\mathrm{F}(16)$	2.940
$\mathrm{Te}(3)-F(15)$	3.080
$\mathrm{Te}(3)-F(11)$	2.940
$\mathrm{Te}(4)-F(11)$	2.840
$\mathrm{Te}(4)-F(15)$	3.030

Section - 3.1: Bond lengths and bond angles for compound 2

Table S4. Selected bond lengths [$A ̊$] and angles [${ }^{\circ}$] for 2.

$\mathrm{Te}(1)-\mathrm{O}(1)$	$1.940(4)$
$\mathrm{Te}(2)-\mathrm{O}(1)$	$1.960(4)$
$\mathrm{Te}(3)-\mathrm{O}(2)$	$1.960(4)$
$\mathrm{Te}(4)-\mathrm{O}(2)$	$1.950(4)$
$\mathrm{Te}(1)-\mathrm{O}(1)-\mathrm{Te}(2)$	$125.2(2)$
$\mathrm{Te}(3)-\mathrm{O}(2)-\mathrm{Te}(4)$	$122.2(2)$

Section - 4: Cyclic voltammetry and bulky electrolysis

Fig. S2. Cyclic voltammogram of Blank (blue), macrocycle 2 (black), blank with 12 eq. equivalents of paraToluene sulfonic acid as a proton source, and Macrocycle 2 with 12 eq. of TsOH. Electrocatalytic conditions 1 mM of the 2 in acetonitrile in the presence of 100 mM TBAP as supporting electrolyte at a scan rate of 100 mV s in an inert atmosphere using a three-electrode configuration.

Fig. S3: (a) Linear sweep voltammetry of solution carbon paper (c.p) with proton source para-toluene sulfonic acid (black), macrocycle 2 (green), macrocycle 2 with proton source (red). Electrocatalytic conditions 1 mM of the macrocycle 2 in acetonitrile in the presence of 100 mM TBAP as supporting electrolyte at a scan rate of 10 mV s in an inert atmosphere using a homemade three-electrode configuration.

Fig. S4: Chronoamperometry profile of the same solution while holding the potential at -0.68 V vs $\mathrm{Ag} / \mathrm{Ag}^{+}$.

Section - 5: Homogeneous System H_{2} calculation

$\mathrm{H}_{2}=\frac{\text { Area }}{\text { Slope }} * 2 *$ empty volume
$\mathrm{H}_{2}=\frac{12500}{22886976} * 2 * 10$
$\mathrm{H}_{2}=0.01 \mu \mathrm{~mol}$
H_{2} Slope calibration value $=22886976 \mu \mathrm{~mol}$

(a). HER activity for the tellurium complex in homogenous system

(b). HER activity for the tellurium complex in heterogeneous system

Fig. S5. (a) and (b) are gas chromatography of evolved H_{2} gas during bulk electrolysis in homogeneous and heterogeneous systems respectively

Section - 6: ESI mass spectral analysis of compound 2

Fig. S6. ESI mass spectra of 2.

Section - 7: ${ }^{125} \mathrm{Te},{ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis of compound 2

Fig. S7. ${ }^{125} \mathrm{Te}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} at room temperature.

Fig. S8. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} at room temperature.

```
&
```


Fig. S9. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} at room temperature.

Fig. S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} at room temperature.

Fig. S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3} at room temperature.

Section - 8: powder XRD data and FT-IR spectral analysis of compound 2

Fig. S12. Powder XRD-pattern for compound 2.

Fig. S13. FT-IR spectrum of compound 2.

Section - 9: EDAX spectrum and elemental analysis for compound 2.

Fig. S14. EDAX spectrum of compound 2

Element	Calculated Weight\%	Measured weight\% from EDAX analysis
B	2.48	3.32
C	38.51	42.58
\mathbf{O}	9.16	9.80
F	17.40	18.95
Te	29.22	25.35
H	3.23	Not detected
	100	-------

Table S5. EDAX elemental analysis of compound 2.

Section - 10: ORTEP diagram of compound 3

Fig. S15. ORTEP diagram of 3. The thermal ellipsoids are shown at a 40% probability level. Solvent molecule and all hydrogen atoms were omitted for clarity.

Section - 11: Te-O (perchlorate) interaction distances of compound 3

Table S6. Bridging anion (perchlorate) Interaction with Tellurium [Å].

	Distance in $[\AA ̊]$
$\mathrm{Te}(1)-\mathrm{O}(3)$	2.658
$\mathrm{Te}(2)-\mathrm{O}(7)$	2.636
$\mathrm{Te}(3)-\mathrm{O}(11)$	3.084
$\mathrm{Te}(4)-\mathrm{O}(4)$	2.685

Table S7. Capping anion (perchlorate) Interaction with Tellurium [Å].

$\mathrm{Te}(1)-\mathrm{O}(11)$	2.970
$\mathrm{Te}(1)-\mathrm{O}(15)$	3.100
$\mathrm{Te}(2)-\mathrm{O}(11)$	2.885
$\mathrm{Te}(2)-\mathrm{O}(15)$	3.085
$\mathrm{Te}(2)-\mathrm{O}(15)$	2.840
$\mathrm{Te}(3)-\mathrm{O}(16)$	2.912
$\mathrm{Te}(4)-\mathrm{O}(12)$	2.960
$\mathrm{Te}(4)-\mathrm{O}(16)$	3.080

Section - 12: Bond lengths and bond angles of compound 3

Table S8. Selected bond lengths [$\AA \AA$] and angles [${ }^{\circ}$] for 3.

$\mathrm{Te}(1)-\mathrm{O}(1)$	$1.9490(18)$
$\mathrm{Te}(2)-\mathrm{O}(1)$	$1.9602(17)$
$\mathrm{Te}(3)-\mathrm{O}(2)$	$1.9434(18)$
$\mathrm{Te}(4)-\mathrm{O}(2)$	$1.9680(17)$
$\mathrm{Te}(1)-\mathrm{O}(1)-\mathrm{Te}(2)$	$122.02(9)$
$\mathrm{Te}(3)-\mathrm{O}(2)-\mathrm{Te}(4)$	$124.80(9)$

Section - 13: ESI mass spectral analysis of compound 3

Fig. S16. ESI mass spectra of 3.

Fig. S16a. ESI mass spectra of $\mathbf{3}$ experimental above and simulated below

Section - 14: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis of compound 3

Fig. S17. ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3} at room temperature.

Fig. S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3} at room temperature.

Section - 15: Powder and FT-IR spectral analysis of compound 3

Fig. S19. Powder XRD-pattern for compound 3.

Fig. S20. FT-IR spectrum of compound $\mathbf{3}$.

Section - 16: EDAX spectrum and elemental analysis for compound 2.

Fig. S21. EDAX spectrum of compound 3.

Element	Calculated Weight\%	Measured weight\% from EDAX analysis
C	37.42	38.90
\mathbf{O}	23.15	25.13
CI	7.89	11.95
$\mathbf{T e}$	28.40	24.02
H	3.14	Not detected
	100	-------

Table S9. EDAX elemental analysis of compound 3.

Section - 17: ORTEP diagram of compound 4

Fig. S22. ORTEP diagram of 4. The thermal ellipsoids are shown at a 40% probability level. All hydrogen atoms omitted for clarity.

Section - 18: Te-F $\left(\mathrm{BF}_{4}\right)$ interaction distances, bond lengths and bond angles of compound 4

Table S10. Interaction [Å], Bond lengths [Å] and angles [] for 4.

$\mathrm{Te}(1)-\mathrm{F}(1) \mathrm{l}$	3.030
$\mathrm{Te}(1)-\mathrm{C}(1))$	$2.100(3)$
$\mathrm{Te}(1)-\mathrm{C}(8))$	$2.100(3)$
$\mathrm{Te}(1)-\mathrm{C}(15))$	$2.120(3)$
$\mathrm{C}(1)-\mathrm{Te}(1)-\mathrm{C}(8)$	$95.30(10)$
$\mathrm{C}(1)-\mathrm{Te}(1)-\mathrm{C}(15)$	$97.45(10)$
$\mathrm{C}(8)-\mathrm{Te}(1)-\mathrm{C}(15)$	$94.95(10)$

Section - 19: ESI mass spectral analysis of compound 4

Fig. S23. ESI mass spectra of 4 (experimental)

Fig. S24. ESI mass spectra of 4 experimental above and simulated below

Section - 20: ${ }^{125} \mathrm{Te}{ }^{19} \mathrm{~F},{ }^{11} \mathrm{~B},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectral analysis of compound

Fig.S22. ${ }^{125} \mathrm{Te}$ NMR spectrum of $\mathbf{4}$ in CDCl_{3} at room temperature.

Fig. S23. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{4}$ in CDCl_{3} at room temperature.

Fig. S24. ${ }^{11} \mathrm{~B}$ NMR spectrum of 4 in CDCl_{3} at room temperature.

Fig. S25. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in CDCl_{3} at room temperature.

Fig. S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 in CDCl_{3} at room temperature.

Section - 21: Powder and FT-IR spectral analysis of compound 4

Fig. S27. Powder XRD-pattern for compound 4.

Fig. S28. IR spectrum of compound 4.

Section - 22: EDAX spectrum and elemental analysis for compound 4.

Fig. S29. EDAX spectrum of compound 4.

Element	Calculated Weight\%	Measured weight\% from EDAX analysis
\mathbf{B}	2.02	3.45
\mathbf{C}	47.08	47.52
\mathbf{O}	8.96	9.37
\mathbf{F}	14.18	20.25
$\mathbf{T e}$	23.82	20.04
\mathbf{H}	3.95	Not detected
	100	-------

Table S10. EDAX elemental analysis of compound 4.

Section - 23: ORTEP diagram of compound 5

Fig. S29. ORTEP diagram of 5. The thermal ellipsoids are shown at a 40\% probability level. All hydrogen atoms omitted for clarity.

Section - 24: Te-O (perchlorate) interaction distances, bond lengths and bond angles of compound 5

Table S11. Interactions [Å], selected bond lengths [\AA] and angles [${ }^{\circ}$] for 5.

$\mathrm{Te}(1)-\mathrm{O}(2)$	3.160
$\mathrm{Te}(1)-\mathrm{C}(7)$	$2.1025(16)$
$\mathrm{Te}(1)-\mathrm{C}(1)$	$2.1034(16)$
$\mathrm{Te}(1)-\mathrm{C}(15)$	$2.1190(16)$
$\mathrm{C}(7)-\mathrm{Te}(1)-\mathrm{C}(1)$	$95.60(6)$
$\mathrm{C}(7)-\mathrm{Te}(1)-\mathrm{C}(15)$	$95.20(6)$
$\mathrm{C}(1)-\mathrm{Te}(1)-\mathrm{C}(15)$	$97.50(6)$

Section - 25: ESI mass spectral analysis of compound 5

Figure S30. ESI mass spectra of 5 .

Section - 26: ${ }^{125}$ Te NMR spectral analysis of compound 5

Fig. S31. ${ }^{125}$ Te NMR spectral analysis of compound $\mathbf{5}$

Section - 27: Powder and FT-IR spectral analysis of compound 5

Fig. S32. Powder XRD-pattern for compound 5.

Fig. S33. FT-IR spectrum of compound $\mathbf{5}$.

Section - 28: EDAX spectrum and elemental analysis for compound 5.

Fig. S34. EDAX spectrum of compound 2

Element	Calculated Weight\%	Measured weight\% from EDAX analysis
\mathbf{C}	45.99	45.11
\mathbf{O}	20.42	26.19
$\mathbf{C l}$	6.46	6.20
$\mathbf{T e}$	23.27	22.50
\mathbf{H}	3.86	Not detected
	100	------------

Table S11. EDAX elemental analysis of compound 5.

Disclaimer: Powder X-ray diffraction was performed to evaluate the bulk purity of the produced compounds 2-5. The small variation observed between the powder XRD data and simulated pattern may be due to the reason that the PXRD data was collected at room temperature whereas the simulated pattern is obtained from SCXRD data collected at 100 K . The SCXRD simulated powder data would also have contributions from the solvent of crystallization whereas the PXRD data was collected in samples which were kept under high vacuum, hence there could be a minor variation in the patterns observed.

The difference between the expected weight percentage and the starting stoichiometric ratio of the studied samples can be attributed to many parameters. The most significant are the time constant (Tc), acquisition time (AT), dead time (DT), work distance (WD), and acceleration voltage (AV), because they have a direct impact on energy resolution, natural width of characteristic X-ray lines, and peak intensity. ${ }^{1}$

1. J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott and D. C. Joy, Scanning electron microscopy and X-ray microanalysis, springer, 2017.

Section - 29: Bond valence Sum calculation

Bond valence sum calculation. Numbers in brackets after atom symbols are at.no., r and c see O"Keeffe and Brese, J.A.C.S. 1991, 113, 3226

$\left[\left\{\left(\rho-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{Te}_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{BF}_{4}\right)\left(\mu-\mathrm{BF}_{4}\right)\right]_{2}\right.$

......Te1
Te (52, 1.40, 2.72)
Rij Dij Vij
-O (8, . 63, 3.15) 2.031 .941 .26
-C (6, .78, 2.00) 2.172 .091 .23
-C (6, .78, 2.00) 2.172 .081 .26
Bond valence sum for Te 3.76
......Te2
Te (52, 1.40, 2.72)
Rij Dij Vij
-O ($8, .63,3.15) 2.031 .961 .20$
-C (6, .78, 2.00) 2.172 .101 .22
-C (6, .78, 2.00) 2.172 .071 .30
Bond valence sum for Te 3.72
......Te3

$$
\begin{array}{rrl}
\mathrm{Te}(52,1.40,2.72) & \mathrm{Rij} \mathrm{Dij} \mathrm{Vij} \\
& -\mathrm{O}(8, .63,3.15) 2.03 & 1.96 \\
1.21 \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.10 & 1.21 \\
-\mathrm{C}(6, .78,2.00) & 2.17 & 2.10 \\
1.22
\end{array}
$$

Bond valence sum for Te 3.64
......Te4
Te (52, 1.40, 2.72)
Rij $\operatorname{Dij} \mathrm{Vij}$
-O ($8, .63,3.15) 2.031 .951 .24$
-C (6, .78, 2.00) 2.172 .111 .17
-C (6, .78, 2.00) 2.172 .071 .31

Bond valence sum for Te 3.7
$\left[\left\{\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{Te}\right\}_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{ClO}_{4}\right)\left(\mu-\mathrm{ClO}_{4}\right)\right]_{2}$
......Te1
Te (52, 1.40, 2.72) Rij Dij Vij
-O ($8, .63,3.15) 2.031 .951 .24$
-C (6, .78, 2.00) 2.172 .101 .22
-C (6, .78, 2.00) 2.172 .111 .18
Bond valence sum for Te 3.64
......Te2

$$
\begin{array}{rrl}
\mathrm{Te}(52,1.40,2.72) & \mathrm{Rij} \mathrm{Dij} \mathrm{Vij} \\
-\mathrm{O}(8, .63,3.15) 2.03 & 1.96 & 1.20 \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.10 & 1.21 \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.08 & 1.27
\end{array}
$$

Bond valence sum for Te 3.69
......Te3
Te (52, 1.40, 2.72) Rij Dij Vij

$$
\begin{aligned}
& -O(8, .63,3.15) 2.031 .941 .26 \\
& -C(6, .78,2.00) 2.172 .101 .20 \\
& -C(6, .78,2.00) 2.172 .091 .24
\end{aligned}
$$

Bond valence sum for Te 3.70
......Te4

$$
\begin{array}{rrl}
\mathrm{Te}(52,1.40,2.72) & \mathrm{Rij} & \mathrm{Dij} \mathrm{Vij} \\
-\mathrm{O}(8, .63,3.15) & 2.03 & 1.97 \\
1.17 \\
-\mathrm{C}(6, .78,2.00) & 2.17 & 2.09 \\
\hline & 1.25 \\
-\mathrm{C}(6, .78,2.00) & 2.17 & 2.10 \\
1.20
\end{array}
$$

Bond valence sum for Te 3.63
$\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{TeBF}_{4}$
......Te1

$$
\begin{array}{rrl}
\mathrm{Te}(52,1.40,2.72) & \mathrm{Rij} \mathrm{Dij} \mathrm{Vij} \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.10 & 1.20 \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.10 & 1.20 \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.12 & 1.15
\end{array}
$$

Bond valence sum for Te 3.56
(p - $\left.\mathrm{OMe} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{TeClO}_{4}$
......Te1

$$
\begin{array}{rrl}
\mathrm{Te}(52,1.40,2.72) & \mathrm{Rij} \mathrm{Dij} \mathrm{Vij} \\
-\mathrm{C}(6, .78,2.00) 2.17 & 2.10 & 1.19 \\
-\mathrm{C}(6, .78,2.00) & 2.17 & 2.10 \\
\hline & 1.19 \\
-\mathrm{C}(6, .78,2.00) & 2.17 & 2.12 \\
1.14
\end{array}
$$

Bond valence sum for Te 3.53
.The End

